|
import os |
|
import torch |
|
import librosa |
|
import gradio as gr |
|
from scipy.io.wavfile import write |
|
from transformers import WavLMModel |
|
|
|
import utils |
|
from models import SynthesizerTrn |
|
from mel_processing import mel_spectrogram_torch |
|
from speaker_encoder.voice_encoder import SpeakerEncoder |
|
|
|
import time |
|
from textwrap import dedent |
|
|
|
import mdtex2html |
|
from loguru import logger |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
from tts_voice import tts_order_voice |
|
import edge_tts |
|
import tempfile |
|
import anyio |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt') |
|
|
|
print("Loading FreeVC(24k)...") |
|
hps = utils.get_hparams_from_file("configs/freevc-24.json") |
|
freevc_24 = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model).to(device) |
|
_ = freevc_24.eval() |
|
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None) |
|
|
|
print("Loading WavLM for content...") |
|
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device) |
|
|
|
def convert(model, src, tgt): |
|
with torch.no_grad(): |
|
|
|
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate) |
|
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) |
|
if model == "FreeVC" or model == "FreeVC (24kHz)": |
|
g_tgt = smodel.embed_utterance(wav_tgt) |
|
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device) |
|
else: |
|
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device) |
|
mel_tgt = mel_spectrogram_torch( |
|
wav_tgt, |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax |
|
) |
|
|
|
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate) |
|
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device) |
|
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device) |
|
|
|
if model == "FreeVC": |
|
audio = freevc.infer(c, g=g_tgt) |
|
elif model == "FreeVC-s": |
|
audio = freevc_s.infer(c, mel=mel_tgt) |
|
else: |
|
audio = freevc_24.infer(c, g=g_tgt) |
|
audio = audio[0][0].data.cpu().float().numpy() |
|
if model == "FreeVC" or model == "FreeVC-s": |
|
write("out.wav", hps.data.sampling_rate, audio) |
|
else: |
|
write("out.wav", 24000, audio) |
|
out = "out.wav" |
|
return out |
|
|
|
|
|
|
|
language_dict = tts_order_voice |
|
|
|
|
|
os.environ["TZ"] = "Asia/Shanghai" |
|
try: |
|
time.tzset() |
|
except Exception: |
|
|
|
logger.warning("Windows, cant run time.tzset()") |
|
|
|
|
|
model_name = "THUDM/chatglm2-6b-int4" |
|
|
|
RETRY_FLAG = False |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
has_cuda = torch.cuda.is_available() |
|
|
|
|
|
|
|
if has_cuda: |
|
model_glm = ( |
|
AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda().half() |
|
) |
|
else: |
|
model_glm = AutoModel.from_pretrained( |
|
model_name, trust_remote_code=True |
|
).float() |
|
|
|
model_glm = model_glm.eval() |
|
|
|
_ = """Override Chatbot.postprocess""" |
|
|
|
|
|
def postprocess(self, y): |
|
if y is None: |
|
return [] |
|
for i, (message, response) in enumerate(y): |
|
y[i] = ( |
|
None if message is None else mdtex2html.convert((message)), |
|
None if response is None else mdtex2html.convert(response), |
|
) |
|
return y |
|
|
|
|
|
gr.Chatbot.postprocess = postprocess |
|
|
|
|
|
def parse_text(text): |
|
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" |
|
lines = text.split("\n") |
|
lines = [line for line in lines if line != ""] |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split("`") |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="language-{items[-1]}">' |
|
else: |
|
lines[i] = "<br></code></pre>" |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("`", r"\`") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
line = line.replace("*", "*") |
|
line = line.replace("_", "_") |
|
line = line.replace("-", "-") |
|
line = line.replace(".", ".") |
|
line = line.replace("!", "!") |
|
line = line.replace("(", "(") |
|
line = line.replace(")", ")") |
|
line = line.replace("$", "$") |
|
lines[i] = "<br>" + line |
|
text = "".join(lines) |
|
return text |
|
|
|
def predict( |
|
RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values |
|
): |
|
try: |
|
chatbot.append((parse_text(input), "")) |
|
except Exception as exc: |
|
logger.error(exc) |
|
logger.debug(f"{chatbot=}") |
|
_ = """ |
|
if chatbot: |
|
chatbot[-1] = (parse_text(input), str(exc)) |
|
yield chatbot, history, past_key_values |
|
# """ |
|
yield chatbot, history, past_key_values |
|
|
|
for response, history, past_key_values in model_glm.stream_chat( |
|
tokenizer, |
|
input, |
|
history, |
|
past_key_values=past_key_values, |
|
return_past_key_values=True, |
|
max_length=max_length, |
|
top_p=top_p, |
|
temperature=temperature, |
|
): |
|
chatbot[-1] = (parse_text(input), parse_text(response)) |
|
|
|
|
|
yield chatbot, history, past_key_values, parse_text(response) |
|
|
|
def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2): |
|
if max_length < 10: |
|
max_length = 4096 |
|
if top_p < 0.1 or top_p > 1: |
|
top_p = 0.85 |
|
if temperature <= 0 or temperature > 1: |
|
temperature = 0.01 |
|
try: |
|
res, _ = model_glm.chat( |
|
tokenizer, |
|
input, |
|
history=[], |
|
past_key_values=None, |
|
max_length=max_length, |
|
top_p=top_p, |
|
temperature=temperature, |
|
) |
|
|
|
except Exception as exc: |
|
logger.error(f"{exc=}") |
|
res = str(exc) |
|
|
|
return res |
|
|
|
def reset_user_input(): |
|
return gr.update(value="") |
|
|
|
|
|
def reset_state(): |
|
return [], [], None, "" |
|
|
|
|
|
|
|
def delete_last_turn(chat, history): |
|
if chat and history: |
|
chat.pop(-1) |
|
history.pop(-1) |
|
return chat, history |
|
|
|
|
|
def retry_last_answer( |
|
user_input, chatbot, max_length, top_p, temperature, history, past_key_values |
|
): |
|
if chatbot and history: |
|
|
|
chatbot.pop(-1) |
|
|
|
RETRY_FLAG = True |
|
|
|
user_input = history[-1][0] |
|
|
|
history.pop(-1) |
|
|
|
yield from predict( |
|
RETRY_FLAG, |
|
user_input, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
past_key_values, |
|
) |
|
|
|
|
|
|
|
def print(text): |
|
return text |
|
|
|
|
|
|
|
async def text_to_speech_edge(text, language_code): |
|
voice = language_dict[language_code] |
|
communicate = edge_tts.Communicate(text, voice) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: |
|
tmp_path = tmp_file.name |
|
|
|
await communicate.save(tmp_path) |
|
|
|
return tmp_path |
|
|
|
with gr.Blocks(title="ChatGLM2-6B-int4", theme=gr.themes.Soft(text_size="sm")) as demo: |
|
gr.HTML("<center>" |
|
"<h1>🥳💕🎶 - ChatGLM2 + 声音克隆:和你喜欢的角色畅所欲言吧!</h1>" |
|
"</center>") |
|
|
|
with gr.Accordion("📒 相关信息", open=False): |
|
_ = f""" ChatGLM2的可选参数信息: |
|
* Low temperature: responses will be more deterministic and focused; High temperature: responses more creative. |
|
* Suggested temperatures -- translation: up to 0.3; chatting: > 0.4 |
|
* Top P controls dynamic vocabulary selection based on context.\n |
|
如果您想让ChatGLM2进行角色扮演并与之对话,请先输入恰当的提示词,如“请你扮演成动漫角色蜡笔小新并和我进行对话”;您也可以为ChatGLM2提供自定义的角色设定\n |
|
当您使用声音克隆功能时,请先在此程序的对应位置上传一段您喜欢的音频 |
|
""" |
|
gr.Markdown(dedent(_)) |
|
|
|
chatbot = gr.Chatbot(height=300) |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
with gr.Column(scale=12): |
|
user_input = gr.Textbox( |
|
label="请在此处和GLM2聊天 (按回车键即可发送)", |
|
placeholder="聊点什么吧", |
|
) |
|
RETRY_FLAG = gr.Checkbox(value=False, visible=False) |
|
with gr.Column(min_width=32, scale=1): |
|
with gr.Row(): |
|
submitBtn = gr.Button("开始和GLM2交流吧", variant="primary") |
|
deleteBtn = gr.Button("删除最新一轮对话", variant="secondary") |
|
retryBtn = gr.Button("重新生成最新一轮对话", variant="secondary") |
|
|
|
with gr.Accordion("🔧 更多设置", open=False): |
|
with gr.Row(): |
|
emptyBtn = gr.Button("清空所有聊天记录") |
|
max_length = gr.Slider( |
|
0, |
|
32768, |
|
value=8192, |
|
step=1.0, |
|
label="Maximum length", |
|
interactive=True, |
|
) |
|
top_p = gr.Slider( |
|
0, 1, value=0.85, step=0.01, label="Top P", interactive=True |
|
) |
|
temperature = gr.Slider( |
|
0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True |
|
) |
|
|
|
|
|
with gr.Row(): |
|
test1 = gr.Textbox(label="GLM2的最新回答 (可编辑)", lines = 3) |
|
with gr.Column(): |
|
language = gr.Dropdown(choices=list(language_dict.keys()), value="普通话 (中国大陆)-Xiaoxiao-女", label="请选择文本对应的语言及您喜欢的说话人") |
|
tts_btn = gr.Button("生成对应的音频吧", variant="primary") |
|
output_audio = gr.Audio(type="filepath", label="为您生成的音频", interactive=False) |
|
|
|
tts_btn.click(text_to_speech_edge, inputs=[test1, language], outputs=[output_audio]) |
|
|
|
with gr.Row(): |
|
model_choice = gr.Dropdown(choices=["FreeVC", "FreeVC-s", "FreeVC (24kHz)"], value="FreeVC (24kHz)", label="Model", visible=False) |
|
audio1 = output_audio |
|
audio2 = gr.Audio(label="请上传您喜欢的声音进行声音克隆", type='filepath') |
|
clone_btn = gr.Button("开始AI声音克隆吧", variant="primary") |
|
audio_cloned = gr.Audio(label="为您生成的专属声音克隆音频", type='filepath') |
|
|
|
clone_btn.click(convert, inputs=[model_choice, audio1, audio2], outputs=[audio_cloned]) |
|
|
|
history = gr.State([]) |
|
past_key_values = gr.State(None) |
|
|
|
user_input.submit( |
|
predict, |
|
[ |
|
RETRY_FLAG, |
|
user_input, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
past_key_values, |
|
], |
|
[chatbot, history, past_key_values, test1], |
|
show_progress="full", |
|
) |
|
submitBtn.click( |
|
predict, |
|
[ |
|
RETRY_FLAG, |
|
user_input, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
past_key_values, |
|
], |
|
[chatbot, history, past_key_values, test1], |
|
show_progress="full", |
|
api_name="predict", |
|
) |
|
submitBtn.click(reset_user_input, [], [user_input]) |
|
|
|
emptyBtn.click( |
|
reset_state, outputs=[chatbot, history, past_key_values, test1], show_progress="full" |
|
) |
|
|
|
retryBtn.click( |
|
retry_last_answer, |
|
inputs=[ |
|
user_input, |
|
chatbot, |
|
max_length, |
|
top_p, |
|
temperature, |
|
history, |
|
past_key_values, |
|
], |
|
|
|
outputs=[chatbot, history, past_key_values, test1], |
|
) |
|
deleteBtn.click(delete_last_turn, [chatbot, history], [chatbot, history]) |
|
|
|
with gr.Accordion("For Chat/Translation API", open=False): |
|
input_text = gr.Text() |
|
tr_btn = gr.Button("Go", variant="primary") |
|
out_text = gr.Text() |
|
tr_btn.click( |
|
trans_api, |
|
[input_text, max_length, top_p, temperature], |
|
out_text, |
|
|
|
api_name="tr", |
|
) |
|
_ = """ |
|
input_text.submit( |
|
trans_api, |
|
[input_text, max_length, top_p, temperature], |
|
out_text, |
|
show_progress="full", |
|
api_name="tr1", |
|
) |
|
# """ |
|
|
|
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>") |
|
gr.Markdown("<center>💡 - 如何使用此程序:输入您对ChatGLM的提问后,依次点击“开始和GLM2交流吧”、“生成对应的音频吧”、“开始AI声音克隆吧”三个按键即可;使用声音克隆功能时,请先上传一段您喜欢的音频</center>") |
|
gr.HTML(''' |
|
<div class="footer"> |
|
<p>Reedit by Forest, Thanks 明·顾璘</p> |
|
</div> |
|
''') |
|
|
|
demo.queue().launch(show_error=True, debug=True) |
|
|