Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +154 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import streamlit as st
|
4 |
+
import googleapiclient.discovery
|
5 |
+
import pandas as pd
|
6 |
+
from transformers import pipeline
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import seaborn as sns
|
9 |
+
|
10 |
+
st.title('Анализатор комментариев :red[YouTube] :sunglasses:')
|
11 |
+
|
12 |
+
|
13 |
+
# Инициализируем модель Hugging Face для анализа тональности текста
|
14 |
+
# Кэшируем ресурс для одной загрузки модели на все сессии
|
15 |
+
#@st.cache_resource
|
16 |
+
def load_model():
|
17 |
+
"""
|
18 |
+
Loads the 'blanchefort/rubert-base-cased-sentiment' model from HuggingFace
|
19 |
+
and saves to cache for consecutive loads.
|
20 |
+
"""
|
21 |
+
model = pipeline(
|
22 |
+
"sentiment-analysis",
|
23 |
+
"blanchefort/rubert-base-cased-sentiment")
|
24 |
+
return model
|
25 |
+
|
26 |
+
|
27 |
+
def extract_video_id(url: str) -> str:
|
28 |
+
"""
|
29 |
+
Extracts the video ID from a YouTube video URL.
|
30 |
+
Args: url (str): The YouTube video URL.
|
31 |
+
Returns: str: The extracted video ID,
|
32 |
+
or an empty string if the URL is not valid.
|
33 |
+
"""
|
34 |
+
pattern = r"(?<=v=)[\w-]+(?=&|\b)"
|
35 |
+
match = re.search(pattern, url)
|
36 |
+
if match:
|
37 |
+
return match.group()
|
38 |
+
else:
|
39 |
+
return ""
|
40 |
+
|
41 |
+
|
42 |
+
def download_comments(video_id: str) -> pd.DataFrame:
|
43 |
+
"""
|
44 |
+
Downloads comments from a YouTube video based on the provided video ID
|
45 |
+
and returns them as a DataFrame.
|
46 |
+
Args: video_id (str): The video ID of the YouTube video.
|
47 |
+
Returns: DataFrame: A DataFrame containing the downloaded comments from the video.
|
48 |
+
"""
|
49 |
+
DEV_KEY = os.getenv('API_KEY_YOUTUBE')
|
50 |
+
youtube = googleapiclient.discovery.build("youtube",
|
51 |
+
"v3",
|
52 |
+
developerKey=DEV_KEY)
|
53 |
+
request = youtube.commentThreads().list(part="snippet",
|
54 |
+
videoId=video_id,
|
55 |
+
maxResults=100)
|
56 |
+
response = request.execute()
|
57 |
+
comments = []
|
58 |
+
for item in response['items']:
|
59 |
+
comment = item['snippet']['topLevelComment']['snippet']
|
60 |
+
comments.append([comment['authorDisplayName'],
|
61 |
+
comment['publishedAt'],
|
62 |
+
comment['updatedAt'],
|
63 |
+
comment['likeCount'],
|
64 |
+
comment['textDisplay'],])
|
65 |
+
return pd.DataFrame(comments,
|
66 |
+
columns=['author',
|
67 |
+
'published_at',
|
68 |
+
'updated_at',
|
69 |
+
'like_count',
|
70 |
+
'text',])
|
71 |
+
|
72 |
+
|
73 |
+
def analyze_emotions_in_comments(df: pd.DataFrame) -> tuple:
|
74 |
+
"""
|
75 |
+
Takes a DataFrame with comments,
|
76 |
+
processes the emotional sentiment of each comment in the DataFrame
|
77 |
+
Args: dataframe (pandas.DataFrame): DataFrame containing comments to analyze.
|
78 |
+
Returns: tuple: containing the updated DataFrame with the added 'Emotional Sentiment' column
|
79 |
+
and the total count of processed comments.
|
80 |
+
"""
|
81 |
+
model = load_model()
|
82 |
+
selected_columns = ['text', 'author', 'published_at']
|
83 |
+
df = df[selected_columns]
|
84 |
+
res_list = []
|
85 |
+
res_list = model(df['text'][:513].to_list())
|
86 |
+
full_df = pd.concat([pd.DataFrame(res_list), df], axis=1)
|
87 |
+
return (full_df, len(res_list))
|
88 |
+
|
89 |
+
|
90 |
+
def plot_heatmap_from_dataframe(df: pd.DataFrame) -> plt:
|
91 |
+
"""
|
92 |
+
Visualizes the data from the input DataFrame and returns a matplotlib plot object.
|
93 |
+
Args: df (DataFrame): The input DataFrame containing the data to be visualized.
|
94 |
+
Returns: plt: A matplotlib plot object showing the visualization of the data.
|
95 |
+
"""
|
96 |
+
df['published_at'] = pd.to_datetime(df['published_at'])
|
97 |
+
df['Date'] = df['published_at'].dt.date
|
98 |
+
df['Hour'] = df['published_at'].dt.hour
|
99 |
+
pivot_table = df.pivot_table(index='Hour',
|
100 |
+
columns='Date',
|
101 |
+
values='text',
|
102 |
+
aggfunc='count')
|
103 |
+
plt.figure(figsize=(10, 6))
|
104 |
+
sns.heatmap(pivot_table,
|
105 |
+
cmap='YlGnBu')
|
106 |
+
plt.title('Количество комментариев по часам и датам')
|
107 |
+
plt.xlabel('Дата')
|
108 |
+
plt.ylabel('Час')
|
109 |
+
return plt
|
110 |
+
|
111 |
+
|
112 |
+
def visualize_data(df: pd.DataFrame):
|
113 |
+
"""
|
114 |
+
Visualizes the data from the input DataFrame and returns a matplotlib figure object.
|
115 |
+
Args: df (DataFrame): The input DataFrame containing the data to be visualized.
|
116 |
+
Returns: fig: A matplotlib figure object
|
117 |
+
"""
|
118 |
+
data = df['label'].value_counts()
|
119 |
+
fig, ax = plt.subplots()
|
120 |
+
plt.title("Эмоциональная окраска комментариев на YouTube")
|
121 |
+
label = data.index
|
122 |
+
ax.pie(data, labels=label, autopct='%1.1f%%')
|
123 |
+
return fig
|
124 |
+
|
125 |
+
|
126 |
+
def change_url():
|
127 |
+
st.session_state.start = False
|
128 |
+
|
129 |
+
|
130 |
+
if "start" not in st.session_state:
|
131 |
+
st.session_state.start = False
|
132 |
+
|
133 |
+
# Получаем id видеоролика из URL для отправки запроса
|
134 |
+
url = st.text_input(label="Enter URL from YouTube", on_change=change_url)
|
135 |
+
video_id = extract_video_id(url)
|
136 |
+
if video_id != "":
|
137 |
+
if btn_start := st.button('Загрузить комментарии'):
|
138 |
+
st.session_state.start = True
|
139 |
+
|
140 |
+
if st.session_state.start:
|
141 |
+
# Выводим таблицу с результатами на странице
|
142 |
+
comments_df = download_comments(video_id)
|
143 |
+
with st.spinner('Analyzing comments...'):
|
144 |
+
full_df, num_comments = analyze_emotions_in_comments(comments_df)
|
145 |
+
st.success(f'Готово! Обработано {num_comments} комментариев.')
|
146 |
+
st.write(full_df)
|
147 |
+
st.markdown('***')
|
148 |
+
|
149 |
+
# Выводим heatmap комментариев по часам и датам
|
150 |
+
st.pyplot(plot_heatmap_from_dataframe(full_df))
|
151 |
+
st.markdown('***')
|
152 |
+
|
153 |
+
# Выводим круговую диаграмму
|
154 |
+
st.pyplot(visualize_data(full_df))
|
requirements.txt
ADDED
Binary file (2.87 kB). View file
|
|