multimodalart HF staff commited on
Commit
b31f6c0
·
1 Parent(s): f0435a3

Debug and not add no prompters to the queue

Browse files
Files changed (1) hide show
  1. app.py +22 -3
app.py CHANGED
@@ -13,6 +13,7 @@ from diffusers import (
13
  DPMSolverMultistepScheduler, # <-- Added import
14
  EulerDiscreteScheduler # <-- Added import
15
  )
 
16
  from share_btn import community_icon_html, loading_icon_html, share_js
17
  from gallery_history import fetch_gallery_history, show_gallery_history
18
  from illusion_style import css
@@ -89,6 +90,10 @@ def upscale(samples, upscale_method, scale_by):
89
  s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
90
  return (s)
91
 
 
 
 
 
92
  # Inference function
93
  def inference(
94
  control_image: Image.Image,
@@ -103,8 +108,10 @@ def inference(
103
  sampler = "DPM++ Karras SDE",
104
  progress = gr.Progress(track_tqdm=True)
105
  ):
106
- if prompt is None or prompt == "":
107
- raise gr.Error("Prompt is required")
 
 
108
 
109
  # Generate the initial image
110
  #init_image = init_pipe(prompt).images[0]
@@ -143,6 +150,10 @@ def inference(
143
  control_guidance_end=float(control_guidance_end),
144
  controlnet_conditioning_scale=float(controlnet_conditioning_scale)
145
  )
 
 
 
 
146
  return out_image["images"][0], gr.update(visible=True), my_seed
147
 
148
  #return out
@@ -186,6 +197,10 @@ with gr.Blocks(css=css) as app:
186
 
187
  history = show_gallery_history()
188
  prompt.submit(
 
 
 
 
189
  inference,
190
  inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
191
  outputs=[result_image, share_group, used_seed]
@@ -193,6 +208,10 @@ with gr.Blocks(css=css) as app:
193
  fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
194
  )
195
  run_btn.click(
 
 
 
 
196
  inference,
197
  inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
198
  outputs=[result_image, share_group, used_seed]
@@ -203,4 +222,4 @@ with gr.Blocks(css=css) as app:
203
  app.queue(max_size=20)
204
 
205
  if __name__ == "__main__":
206
- app.launch(max_threads=120)
 
13
  DPMSolverMultistepScheduler, # <-- Added import
14
  EulerDiscreteScheduler # <-- Added import
15
  )
16
+ import time
17
  from share_btn import community_icon_html, loading_icon_html, share_js
18
  from gallery_history import fetch_gallery_history, show_gallery_history
19
  from illusion_style import css
 
90
  s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
91
  return (s)
92
 
93
+ def check_prompt(prompt: str):
94
+ if prompt is None or prompt == "":
95
+ raise gr.Error("Prompt is required")
96
+
97
  # Inference function
98
  def inference(
99
  control_image: Image.Image,
 
108
  sampler = "DPM++ Karras SDE",
109
  progress = gr.Progress(track_tqdm=True)
110
  ):
111
+ start_time = time.time()
112
+ start_time_struct = time.localtime(start_time)
113
+ start_time_formatted = time.strftime("%H:%M:%S", start_time_struct)
114
+ print(f"Inference started at {start_time_formatted}")
115
 
116
  # Generate the initial image
117
  #init_image = init_pipe(prompt).images[0]
 
150
  control_guidance_end=float(control_guidance_end),
151
  controlnet_conditioning_scale=float(controlnet_conditioning_scale)
152
  )
153
+ end_time = time.time()
154
+ end_time_struct = time.localtime(end_time)
155
+ end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
156
+ print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
157
  return out_image["images"][0], gr.update(visible=True), my_seed
158
 
159
  #return out
 
197
 
198
  history = show_gallery_history()
199
  prompt.submit(
200
+ check_prompt,
201
+ inputs=[prompt],
202
+ queue=False
203
+ ).then(
204
  inference,
205
  inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
206
  outputs=[result_image, share_group, used_seed]
 
208
  fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
209
  )
210
  run_btn.click(
211
+ check_prompt,
212
+ inputs=[prompt],
213
+ queue=False
214
+ ).then(
215
  inference,
216
  inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
217
  outputs=[result_image, share_group, used_seed]
 
222
  app.queue(max_size=20)
223
 
224
  if __name__ == "__main__":
225
+ app.launch(max_threads=240)