import torch import gradio as gr # Use a pipeline as a high-level helper from transformers import pipeline question_answer = pipeline("question-answering", model="deepset/roberta-base-squad2") # question_answer = pipeline("question-answering", # model=model_path) def read_file_content(file_obj): """ Reads the content of a file object and returns it. Parameters: file_obj (file object): The file object to read from. Returns: str: The content of the file. """ try: with open(file_obj.name, 'r', encoding='utf-8') as file: context = file.read() return context except Exception as e: return f"An error occurred: {e}" def get_answer(file, question): context = read_file_content(file) answer = question_answer(question=question, context=context) return answer["answer"] demo = gr.Interface(fn=get_answer, inputs=[gr.File(label="Upload your file"), gr.Textbox(label="Input your question",lines=1)], outputs=[gr.Textbox(label="Answer text",lines=1)], title="Document Q & A", description="THIS APPLICATION WILL BE USED TO ANSER QUESTIONS BASED ON CONTEXT PROVIDED.") demo.launch()