Spaces:
Sleeping
Sleeping
from PIL import Image, ImageDraw, ImageFont | |
import tempfile | |
import gradio as gr | |
from smolagents import CodeAgent, InferenceClientModel | |
from smolagents import DuckDuckGoSearchTool, Tool | |
from diffusers import DiffusionPipeline | |
import torch | |
from huggingface_hub import login | |
import os | |
token = os.environ.get("HF_TOKEN") | |
if token: | |
login(token=token) | |
else: | |
print("Warning: HF_TOKEN not set. You may not be able to access private models or tools.") | |
# ========================================================= | |
# Utility functions | |
# ========================================================= | |
def add_label_to_image(image, label): | |
draw = ImageDraw.Draw(image) | |
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf" | |
font_size = 30 | |
try: | |
font = ImageFont.truetype(font_path, font_size) | |
except: | |
font = ImageFont.load_default() | |
text_bbox = draw.textbbox((0, 0), label, font=font) | |
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] | |
position = (image.width - text_width - 20, image.height - text_height - 20) | |
rect_margin = 10 | |
rect_position = [ | |
position[0] - rect_margin, | |
position[1] - rect_margin, | |
position[0] + text_width + rect_margin, | |
position[1] + text_height + rect_margin, | |
] | |
draw.rectangle(rect_position, fill=(0, 0, 0, 128)) | |
draw.text(position, label, fill="white", font=font) | |
return image | |
def plot_and_save_agent_image(agent_image, label, save_path=None): | |
pil_image = agent_image.to_raw() | |
labeled_image = add_label_to_image(pil_image, label) | |
#labeled_image.show() | |
if save_path: | |
labeled_image.save(save_path) | |
print(f"Image saved to {save_path}") | |
else: | |
print("No save path provided. Image not saved.") | |
def generate_prompts_for_object(object_name): | |
return { | |
"past": f"Show an old version of a {object_name} from its early days.", | |
"present": f"Show a {object_name} with current features/design/technology.", | |
"future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design." | |
} | |
''' | |
image_generation_tool = Tool.from_space( | |
"KingNish/Realtime-FLUX", | |
api_name="/predict", # Optional if there's only one endpoint | |
name="image_generator", | |
description="Generate an image from a prompt" | |
) | |
''' | |
import requests | |
from smolagents import Tool | |
def flux_proxy(user_prompt: str): | |
# Call the Hugging Face Space API directly | |
url = "https://black-forest-labs-flux-1-schnell.hf.space/run/infer" | |
headers = {"Authorization": f"Bearer {token}"} | |
response = requests.post(url, headers=headers, json={"data": [user_prompt]}) | |
response.raise_for_status() | |
output_url = response.json()["data"][0] # Usually a URL or base64 image | |
return output_url # Adjust this based on your agent's expectations | |
image_generation_tool = Tool.from_function( | |
fn=flux_proxy, | |
name="image_generator", | |
description="Generate an image from a prompt" | |
) | |
# ========================================================= | |
# Tool and Agent Initialization | |
# ========================================================= | |
search_tool = DuckDuckGoSearchTool() | |
#llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct") | |
llm_engine = InferenceClientModel("Qwen/Qwen2.5-Coder-32B-Instruct") | |
agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine) | |
# ========================================================= | |
# Main logic for image generation | |
# ========================================================= | |
def generate_object_history(object_name): | |
images = [] | |
prompts = generate_prompts_for_object(object_name) | |
labels = { | |
"past": f"{object_name} - Past", | |
"present": f"{object_name} - Present", | |
"future": f"{object_name} - Future" | |
} | |
general_instruction = ( | |
"Search the necessary information and features for the following prompt, " | |
"then generate an image of it." | |
) | |
for time_period, prompt in prompts.items(): | |
print(f"Generating {time_period} frame: {prompt}") | |
#result = agent.run(prompt) | |
try: | |
result = agent.run( | |
general_instruction, | |
additional_args={"user_prompt": prompt} | |
) | |
image = result.to_raw() | |
except Exception as e: | |
print(f"Agent failed on {time_period}: {e}") | |
continue | |
images.append(result.to_raw()) | |
image_filename = f"{object_name}_{time_period}.png" | |
plot_and_save_agent_image(result, labels[time_period], save_path=image_filename) | |
gif_path = f"{object_name}_evolution.gif" | |
images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0) | |
return [(f"{object_name}_past.png", labels["past"]), | |
(f"{object_name}_present.png", labels["present"]), | |
(f"{object_name}_future.png", labels["future"])], gif_path | |
#return images, gif_path | |
# ========================================================= | |
# Gradio Interface | |
# ========================================================= | |
def create_gradio_interface(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# TimeMetamorphy: An Object Evolution Generator") | |
gr.Markdown(""" | |
Explore how everyday objects evolved over time. Enter an object name like "phone", "car", or "bicycle" | |
and see its past, present, and future visualized with AI! | |
""") | |
default_images = [ | |
("car_past.png", "Car - Past"), | |
("car_present.png", "Car - Present"), | |
("car_future.png", "Car - Future") | |
] | |
default_gif_path = "car_evolution.gif" | |
with gr.Row(): | |
with gr.Column(): | |
object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g. bicycle, car, phone") | |
generate_button = gr.Button("Generate Evolution") | |
image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images) | |
#image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, type="filepath") | |
gif_output = gr.Image(label="Generated GIF", value=default_gif_path) | |
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output]) | |
return demo | |
# ========================================================= | |
# Run the app | |
# ========================================================= | |
demo = create_gradio_interface() | |
demo.launch(share=True) | |