File size: 6,353 Bytes
3db8e9e
5658261
3db8e9e
9c6b402
63f528a
5ace3a2
 
3db8e9e
497259e
 
 
 
 
 
 
 
 
 
5658261
 
 
3db8e9e
 
 
 
 
 
 
 
 
5658261
3db8e9e
5658261
3db8e9e
5658261
3db8e9e
 
5658261
 
 
 
3db8e9e
 
 
 
 
5658261
 
 
 
cbc8cbc
3db8e9e
 
 
5658261
 
 
3db8e9e
 
 
 
 
 
 
 
08ac9f6
d7983da
08ac9f6
 
6a258a0
4ff0bf6
 
 
81328c2
08ac9f6
5658261
 
 
9c6b402
5658261
37383cf
7a56df2
9066bb6
5658261
 
 
 
 
 
3db8e9e
5658261
3db8e9e
 
 
 
 
 
 
8349a8f
 
 
 
 
 
3db8e9e
 
8349a8f
 
6d50a88
 
 
 
 
da6130f
 
9a691e3
da6130f
6d50a88
 
 
 
 
5658261
 
 
3db8e9e
 
 
da48de7
 
 
 
 
 
 
4ba7421
3db8e9e
5658261
 
 
3db8e9e
 
 
5658261
3db8e9e
5658261
 
3db8e9e
 
 
da48de7
 
 
 
 
 
 
 
 
3db8e9e
 
 
 
5658261
3db8e9e
da48de7
4ba7421
3db8e9e
 
 
5658261
3db8e9e
 
5658261
 
 
 
3db8e9e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from PIL import Image, ImageDraw, ImageFont
import tempfile
import gradio as gr
from smolagents import CodeAgent, InferenceClientModel
from smolagents import DuckDuckGoSearchTool, Tool
from diffusers import DiffusionPipeline
import torch

from huggingface_hub import login
import os

token = os.environ.get("HF_TOKEN")
if token:
    login(token=token)
else:
    print("Warning: HF_TOKEN not set. You may not be able to access private models or tools.")


# =========================================================
# Utility functions
# =========================================================

def add_label_to_image(image, label):
    draw = ImageDraw.Draw(image)
    font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
    font_size = 30
    try:
        font = ImageFont.truetype(font_path, font_size)
    except:
        font = ImageFont.load_default()

    text_bbox = draw.textbbox((0, 0), label, font=font)
    text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
    position = (image.width - text_width - 20, image.height - text_height - 20)

    rect_margin = 10
    rect_position = [
        position[0] - rect_margin,
        position[1] - rect_margin,
        position[0] + text_width + rect_margin,
        position[1] + text_height + rect_margin,
    ]
    draw.rectangle(rect_position, fill=(0, 0, 0, 128))
    draw.text(position, label, fill="white", font=font)
    return image


def plot_and_save_agent_image(agent_image, label, save_path=None):
    pil_image = agent_image.to_raw()
    labeled_image = add_label_to_image(pil_image, label)
    #labeled_image.show()
    if save_path:
        labeled_image.save(save_path)
        print(f"Image saved to {save_path}")
    else:
        print("No save path provided. Image not saved.")


def generate_prompts_for_object(object_name):
    return {
        "past": f"Show an old version of a {object_name} from its early days.",
        "present": f"Show a {object_name} with current features/design/technology.",
        "future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
    }


image_generation_tool = Tool.from_space(
    #"KingNish/Realtime-FLUX",
    "black-forest-labs/FLUX.1-schnell",
	api_name="/infer",
    name="image_generator",
    description="Generate an image from a prompt"
)


# =========================================================
# Tool and Agent Initialization
# =========================================================

search_tool = DuckDuckGoSearchTool()
#llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")

llm_engine = InferenceClientModel("Qwen/Qwen2.5-Coder-32B-Instruct")
agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine)

# =========================================================
# Main logic for image generation
# =========================================================

def generate_object_history(object_name):
    images = []
    prompts = generate_prompts_for_object(object_name)
    labels = {
        "past": f"{object_name} - Past",
        "present": f"{object_name} - Present",
        "future": f"{object_name} - Future"
    }


    general_instruction = (
        "Search the necessary information and features for the following prompt, "
        "then generate an image of it."
    )

    for time_period, prompt in prompts.items():
        print(f"Generating {time_period} frame: {prompt}")
        #result = agent.run(prompt)

        try:
            result = agent.run(
                general_instruction,
                additional_args={"user_prompt": prompt}
            )
            
            if isinstance(result, (list, tuple)):
                result = result[0]
            
            image = result.to_raw()
        except Exception as e:
            print(f"Agent failed on {time_period}: {e}")
            continue
            
        images.append(result.to_raw())
        image_filename = f"{object_name}_{time_period}.png"
        plot_and_save_agent_image(result, labels[time_period], save_path=image_filename)

    gif_path = f"{object_name}_evolution.gif"
    images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0)
    #return [
    #    f"{object_name}_past.png",
    #    f"{object_name}_present.png",
    #    f"{object_name}_future.png"], gif_path
    return [(f"{object_name}_past.png", labels["past"]),
           (f"{object_name}_present.png", labels["present"]),
           (f"{object_name}_future.png", labels["future"])], gif_path
    #return images, gif_path

# =========================================================
# Gradio Interface
# =========================================================

def create_gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# TimeMetamorphy: An Object Evolution Generator")
        gr.Markdown("""
        Explore how everyday objects evolved over time. Enter an object name like "phone", "car", or "bicycle"
        and see its past, present, and future visualized with AI!
        """)

        default_images = [
            ("car_past.png", "Car - Past"),
            ("car_present.png", "Car - Present"),
            ("car_future.png", "Car - Future")
        ]
        #default_images = [
        #        "car_past.png",
        #        "car_present.png",
        #        "car_future.png"
        #    ]
        default_gif_path = "car_evolution.gif"

        with gr.Row():
            with gr.Column():
                object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g. bicycle, car, phone")
                generate_button = gr.Button("Generate Evolution")
                image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images, type="filepath" )
                #image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, type="filepath")
                gif_output = gr.Image(label="Generated GIF", value=default_gif_path)

        generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])

    return demo

# =========================================================
# Run the app
# =========================================================

demo = create_gradio_interface()
demo.launch(share=True)