File size: 6,353 Bytes
3db8e9e 5658261 3db8e9e 9c6b402 63f528a 5ace3a2 3db8e9e 497259e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 cbc8cbc 3db8e9e 5658261 3db8e9e 08ac9f6 d7983da 08ac9f6 6a258a0 4ff0bf6 81328c2 08ac9f6 5658261 9c6b402 5658261 37383cf 7a56df2 9066bb6 5658261 3db8e9e 5658261 3db8e9e 8349a8f 3db8e9e 8349a8f 6d50a88 da6130f 9a691e3 da6130f 6d50a88 5658261 3db8e9e da48de7 4ba7421 3db8e9e 5658261 3db8e9e 5658261 3db8e9e 5658261 3db8e9e da48de7 3db8e9e 5658261 3db8e9e da48de7 4ba7421 3db8e9e 5658261 3db8e9e 5658261 3db8e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from PIL import Image, ImageDraw, ImageFont
import tempfile
import gradio as gr
from smolagents import CodeAgent, InferenceClientModel
from smolagents import DuckDuckGoSearchTool, Tool
from diffusers import DiffusionPipeline
import torch
from huggingface_hub import login
import os
token = os.environ.get("HF_TOKEN")
if token:
login(token=token)
else:
print("Warning: HF_TOKEN not set. You may not be able to access private models or tools.")
# =========================================================
# Utility functions
# =========================================================
def add_label_to_image(image, label):
draw = ImageDraw.Draw(image)
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf"
font_size = 30
try:
font = ImageFont.truetype(font_path, font_size)
except:
font = ImageFont.load_default()
text_bbox = draw.textbbox((0, 0), label, font=font)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
position = (image.width - text_width - 20, image.height - text_height - 20)
rect_margin = 10
rect_position = [
position[0] - rect_margin,
position[1] - rect_margin,
position[0] + text_width + rect_margin,
position[1] + text_height + rect_margin,
]
draw.rectangle(rect_position, fill=(0, 0, 0, 128))
draw.text(position, label, fill="white", font=font)
return image
def plot_and_save_agent_image(agent_image, label, save_path=None):
pil_image = agent_image.to_raw()
labeled_image = add_label_to_image(pil_image, label)
#labeled_image.show()
if save_path:
labeled_image.save(save_path)
print(f"Image saved to {save_path}")
else:
print("No save path provided. Image not saved.")
def generate_prompts_for_object(object_name):
return {
"past": f"Show an old version of a {object_name} from its early days.",
"present": f"Show a {object_name} with current features/design/technology.",
"future": f"Show a futuristic version of a {object_name}, by predicting advanced features and futuristic design."
}
image_generation_tool = Tool.from_space(
#"KingNish/Realtime-FLUX",
"black-forest-labs/FLUX.1-schnell",
api_name="/infer",
name="image_generator",
description="Generate an image from a prompt"
)
# =========================================================
# Tool and Agent Initialization
# =========================================================
search_tool = DuckDuckGoSearchTool()
#llm_engine = InferenceClientModel("Qwen/Qwen2.5-72B-Instruct")
llm_engine = InferenceClientModel("Qwen/Qwen2.5-Coder-32B-Instruct")
agent = CodeAgent(tools=[image_generation_tool, search_tool], model=llm_engine)
# =========================================================
# Main logic for image generation
# =========================================================
def generate_object_history(object_name):
images = []
prompts = generate_prompts_for_object(object_name)
labels = {
"past": f"{object_name} - Past",
"present": f"{object_name} - Present",
"future": f"{object_name} - Future"
}
general_instruction = (
"Search the necessary information and features for the following prompt, "
"then generate an image of it."
)
for time_period, prompt in prompts.items():
print(f"Generating {time_period} frame: {prompt}")
#result = agent.run(prompt)
try:
result = agent.run(
general_instruction,
additional_args={"user_prompt": prompt}
)
if isinstance(result, (list, tuple)):
result = result[0]
image = result.to_raw()
except Exception as e:
print(f"Agent failed on {time_period}: {e}")
continue
images.append(result.to_raw())
image_filename = f"{object_name}_{time_period}.png"
plot_and_save_agent_image(result, labels[time_period], save_path=image_filename)
gif_path = f"{object_name}_evolution.gif"
images[0].save(gif_path, save_all=True, append_images=images[1:], duration=1000, loop=0)
#return [
# f"{object_name}_past.png",
# f"{object_name}_present.png",
# f"{object_name}_future.png"], gif_path
return [(f"{object_name}_past.png", labels["past"]),
(f"{object_name}_present.png", labels["present"]),
(f"{object_name}_future.png", labels["future"])], gif_path
#return images, gif_path
# =========================================================
# Gradio Interface
# =========================================================
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# TimeMetamorphy: An Object Evolution Generator")
gr.Markdown("""
Explore how everyday objects evolved over time. Enter an object name like "phone", "car", or "bicycle"
and see its past, present, and future visualized with AI!
""")
default_images = [
("car_past.png", "Car - Past"),
("car_present.png", "Car - Present"),
("car_future.png", "Car - Future")
]
#default_images = [
# "car_past.png",
# "car_present.png",
# "car_future.png"
# ]
default_gif_path = "car_evolution.gif"
with gr.Row():
with gr.Column():
object_name_input = gr.Textbox(label="Enter an object name", placeholder="e.g. bicycle, car, phone")
generate_button = gr.Button("Generate Evolution")
image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, value=default_images, type="filepath" )
#image_gallery = gr.Gallery(label="Generated Images", columns=3, rows=1, type="filepath")
gif_output = gr.Image(label="Generated GIF", value=default_gif_path)
generate_button.click(fn=generate_object_history, inputs=[object_name_input], outputs=[image_gallery, gif_output])
return demo
# =========================================================
# Run the app
# =========================================================
demo = create_gradio_interface()
demo.launch(share=True)
|