import torch from constants import DIALECTS, DIALECTS_WITH_LABELS def predict_top_p(model, tokenizer, text, P=0.9): """Predict the top dialects with an accumulative confidence of at least P.""" assert P <= 1 and P >= 0 logits = model(**tokenizer(text, return_tensors="pt")).logits probabilities = torch.softmax(logits, dim=1).flatten().tolist() topk_predictions = torch.topk(logits, 18).indices.flatten().tolist() predictions = [0 for _ in range(18)] total_prob = 0 for i in range(18): total_prob += probabilities[topk_predictions[i]] predictions[topk_predictions[i]] = 1 if total_prob >= P: break return [DIALECTS[i] for i, p in enumerate(predictions) if p == 1]