Compute the Evaluation Metrics
Browse files- app.py +73 -2
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
# TODO: requirments.txt
|
2 |
import os
|
|
|
3 |
import pandas as pd
|
4 |
import streamlit as st
|
5 |
|
@@ -7,6 +8,7 @@ import torch
|
|
7 |
import datasets
|
8 |
from tqdm import tqdm
|
9 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
10 |
|
11 |
model_name = st.text_input("Enter a model's name on HF")
|
12 |
# MODEL_NAME = "AMR-KELEG/NADI2024-baseline"
|
@@ -32,6 +34,21 @@ DIALECTS = [
|
|
32 |
]
|
33 |
assert len(DIALECTS) == 18
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
36 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
37 |
|
@@ -53,6 +70,11 @@ def predict_top_p(text, P=0.9):
|
|
53 |
if total_prob >= P:
|
54 |
break
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
return [DIALECTS[i] for i, p in enumerate(predictions) if p == 1]
|
57 |
|
58 |
|
@@ -65,9 +87,8 @@ sentences_labels, sentences_predictions = [], []
|
|
65 |
for sample in tqdm(dataset):
|
66 |
text = sample["sentence"]
|
67 |
labels = [
|
68 |
-
DIALECTS[i]
|
69 |
for i in range(len(DIALECTS))
|
70 |
-
if DIALECTS[i] in sample.keys() and int(sample[DIALECTS[i]]) == 1
|
71 |
]
|
72 |
pred = predict_top_p(text)
|
73 |
sentences_labels.append(labels)
|
@@ -82,3 +103,53 @@ st.table(
|
|
82 |
}
|
83 |
)
|
84 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# TODO: requirments.txt
|
2 |
import os
|
3 |
+
import numpy as np
|
4 |
import pandas as pd
|
5 |
import streamlit as st
|
6 |
|
|
|
8 |
import datasets
|
9 |
from tqdm import tqdm
|
10 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
11 |
+
from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score
|
12 |
|
13 |
model_name = st.text_input("Enter a model's name on HF")
|
14 |
# MODEL_NAME = "AMR-KELEG/NADI2024-baseline"
|
|
|
34 |
]
|
35 |
assert len(DIALECTS) == 18
|
36 |
|
37 |
+
DIALECTS_WITH_LABELS = [
|
38 |
+
"Algeria",
|
39 |
+
"Egypt",
|
40 |
+
"Iraq",
|
41 |
+
"Jordan",
|
42 |
+
"Morocco",
|
43 |
+
"Palestine",
|
44 |
+
"Saudi_Arabia",
|
45 |
+
"Sudan",
|
46 |
+
"Syria",
|
47 |
+
"Tunisia",
|
48 |
+
"Yemen",
|
49 |
+
]
|
50 |
+
assert len(DIALECTS_WITH_LABELS) == 11
|
51 |
+
|
52 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
53 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
54 |
|
|
|
70 |
if total_prob >= P:
|
71 |
break
|
72 |
|
73 |
+
return [
|
74 |
+
predictions[i]
|
75 |
+
for i, dialect in enumerate(DIALECTS)
|
76 |
+
if dialect in DIALECTS_WITH_LABELS
|
77 |
+
]
|
78 |
return [DIALECTS[i] for i, p in enumerate(predictions) if p == 1]
|
79 |
|
80 |
|
|
|
87 |
for sample in tqdm(dataset):
|
88 |
text = sample["sentence"]
|
89 |
labels = [
|
90 |
+
1 if DIALECTS[i] in sample.keys() and int(sample[DIALECTS[i]]) == 1 else 0
|
91 |
for i in range(len(DIALECTS))
|
|
|
92 |
]
|
93 |
pred = predict_top_p(text)
|
94 |
sentences_labels.append(labels)
|
|
|
103 |
}
|
104 |
)
|
105 |
)
|
106 |
+
|
107 |
+
gold_matrix = np.array(sentences_labels)
|
108 |
+
prediction_matrix = np.array(sentences_predictions)
|
109 |
+
|
110 |
+
# Compute the scores for each label (country) on its own
|
111 |
+
accuracy_scores = [
|
112 |
+
accuracy_score(y_true=gold_matrix[:, i], y_pred=prediction_matrix[:, i]) * 100
|
113 |
+
for i in range(gold_matrix.shape[1])
|
114 |
+
]
|
115 |
+
precision_scores = [
|
116 |
+
precision_score(
|
117 |
+
y_true=gold_matrix[:, i],
|
118 |
+
y_pred=prediction_matrix[:, i],
|
119 |
+
average="binary",
|
120 |
+
pos_label="1",
|
121 |
+
)
|
122 |
+
* 100
|
123 |
+
for i in range(gold_matrix.shape[1])
|
124 |
+
]
|
125 |
+
recall_scores = [
|
126 |
+
recall_score(
|
127 |
+
y_true=gold_matrix[:, i],
|
128 |
+
y_pred=prediction_matrix[:, i],
|
129 |
+
average="binary",
|
130 |
+
pos_label="1",
|
131 |
+
)
|
132 |
+
* 100
|
133 |
+
for i in range(gold_matrix.shape[1])
|
134 |
+
]
|
135 |
+
f1_scores = [
|
136 |
+
f1_score(
|
137 |
+
y_true=gold_matrix[:, i],
|
138 |
+
y_pred=prediction_matrix[:, i],
|
139 |
+
average="binary",
|
140 |
+
pos_label="1",
|
141 |
+
)
|
142 |
+
* 100
|
143 |
+
for i in range(gold_matrix.shape[1])
|
144 |
+
]
|
145 |
+
|
146 |
+
# Compute the averaged scores
|
147 |
+
average_accuracy = np.mean(accuracy_scores)
|
148 |
+
average_precision = np.mean(precision_scores)
|
149 |
+
average_recall = np.mean(recall_scores)
|
150 |
+
average_f1 = np.mean(f1_scores)
|
151 |
+
|
152 |
+
st.write(f"Average Accuracy: {average_accuracy:.2f}%")
|
153 |
+
st.write(f"Average Precision: {average_precision:.2f}%")
|
154 |
+
st.write(f"Average Recall: {average_recall:.2f}%")
|
155 |
+
st.write(f"Average F1: {average_f1:.2f}%")
|
requirements.txt
CHANGED
@@ -2,3 +2,4 @@ transformers
|
|
2 |
torch
|
3 |
datasets
|
4 |
pandas
|
|
|
|
2 |
torch
|
3 |
datasets
|
4 |
pandas
|
5 |
+
numpy
|