Populate the leaderboard
Browse files
app.py
CHANGED
@@ -11,13 +11,63 @@ from inspect import getmembers, isfunction
|
|
11 |
import eval_utils
|
12 |
import utils
|
13 |
import numpy as np
|
|
|
14 |
from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score
|
15 |
|
16 |
|
17 |
tab1, tab2 = st.tabs(["Leaderboard", "Submit a Model"])
|
18 |
|
19 |
with tab1:
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
with tab2:
|
23 |
model_name = st.text_input("Enter a model's name on HF")
|
@@ -25,6 +75,7 @@ with tab2:
|
|
25 |
"Inference Method",
|
26 |
[func_name for func_name, _ in getmembers(eval_utils, isfunction)],
|
27 |
)
|
|
|
28 |
if model_name:
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
@@ -45,31 +96,7 @@ with tab2:
|
|
45 |
|
46 |
# Store the predictions in a private dataset
|
47 |
utils.upload_predictions(
|
48 |
-
os.environ["PREDICTIONS_DATASET_NAME"], predictions, model_name
|
49 |
)
|
50 |
|
51 |
-
|
52 |
-
accuracy_scores = {}
|
53 |
-
f1_scores = {}
|
54 |
-
recall_scores = {}
|
55 |
-
precision_scores = {}
|
56 |
-
|
57 |
-
for dialect in DIALECTS_WITH_LABELS:
|
58 |
-
y_true = labels[dialect]
|
59 |
-
y_pred = [dialect in prediction for prediction in predictions]
|
60 |
-
accuracy = accuracy_score(y_true, y_pred)
|
61 |
-
f1 = f1_score(y_true, y_pred)
|
62 |
-
recall = recall_score(y_true, y_pred)
|
63 |
-
precision = precision_score(y_true, y_pred)
|
64 |
-
|
65 |
-
accuracy_scores[dialect] = accuracy
|
66 |
-
f1_scores[dialect] = f1
|
67 |
-
recall_scores[dialect] = recall
|
68 |
-
precision_scores[dialect] = precision
|
69 |
-
|
70 |
-
macro_avg_accuracy = np.mean(list(accuracy_scores.values()))
|
71 |
-
macro_avg_f1 = np.mean(list(f1_scores.values()))
|
72 |
-
macro_avg_recall = np.mean(list(recall_scores.values()))
|
73 |
-
macro_avg_precision = np.mean(list(precision_scores.values()))
|
74 |
-
|
75 |
-
st.toast(f"Evaluation completed!")
|
|
|
11 |
import eval_utils
|
12 |
import utils
|
13 |
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score
|
16 |
|
17 |
|
18 |
tab1, tab2 = st.tabs(["Leaderboard", "Submit a Model"])
|
19 |
|
20 |
with tab1:
|
21 |
+
# Load the labels
|
22 |
+
dataset_name = os.environ["DATASET_NAME"]
|
23 |
+
dataset = datasets.load_dataset(dataset_name)["test"]
|
24 |
+
labels = {dialect: dataset[dialect] for dialect in DIALECTS_WITH_LABELS}
|
25 |
+
|
26 |
+
# Load the models' predictions
|
27 |
+
model_predictions_rows = datasets.load_dataset(
|
28 |
+
os.environ["PREDICTIONS_DATASET_NAME"]
|
29 |
+
)["train"]
|
30 |
+
|
31 |
+
evaluation_metrics = []
|
32 |
+
for row in model_predictions_rows:
|
33 |
+
# Evaluate the models
|
34 |
+
accuracy_scores = {}
|
35 |
+
f1_scores = {}
|
36 |
+
recall_scores = {}
|
37 |
+
precision_scores = {}
|
38 |
+
predictions = row["predictions"]
|
39 |
+
|
40 |
+
for dialect in DIALECTS_WITH_LABELS:
|
41 |
+
y_true = labels[dialect]
|
42 |
+
y_pred = [dialect in prediction for prediction in predictions]
|
43 |
+
accuracy = accuracy_score(y_true, y_pred)
|
44 |
+
f1 = f1_score(y_true, y_pred)
|
45 |
+
recall = recall_score(y_true, y_pred)
|
46 |
+
precision = precision_score(y_true, y_pred)
|
47 |
+
|
48 |
+
accuracy_scores[dialect] = accuracy
|
49 |
+
f1_scores[dialect] = f1
|
50 |
+
recall_scores[dialect] = recall
|
51 |
+
precision_scores[dialect] = precision
|
52 |
+
|
53 |
+
macro_avg_accuracy = np.mean(list(accuracy_scores.values()))
|
54 |
+
macro_avg_f1 = np.mean(list(f1_scores.values()))
|
55 |
+
macro_avg_recall = np.mean(list(recall_scores.values()))
|
56 |
+
macro_avg_precision = np.mean(list(precision_scores.values()))
|
57 |
+
|
58 |
+
evaluation_metrics.append(
|
59 |
+
{
|
60 |
+
"model_name": row["model_name"],
|
61 |
+
"macro_avg_accuracy": macro_avg_accuracy,
|
62 |
+
"macro_avg_f1": macro_avg_f1,
|
63 |
+
"macro_avg_recall": macro_avg_recall,
|
64 |
+
"macro_avg_precision": macro_avg_precision,
|
65 |
+
}
|
66 |
+
)
|
67 |
+
results_df = pd.DataFrame(evaluation_metrics).sort_values(
|
68 |
+
"macro_avg_f1", ascending=False
|
69 |
+
)
|
70 |
+
st.table(results_df)
|
71 |
|
72 |
with tab2:
|
73 |
model_name = st.text_input("Enter a model's name on HF")
|
|
|
75 |
"Inference Method",
|
76 |
[func_name for func_name, _ in getmembers(eval_utils, isfunction)],
|
77 |
)
|
78 |
+
|
79 |
if model_name:
|
80 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
81 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
96 |
|
97 |
# Store the predictions in a private dataset
|
98 |
utils.upload_predictions(
|
99 |
+
os.environ["PREDICTIONS_DATASET_NAME"], predictions, model_name, inference_function
|
100 |
)
|
101 |
|
102 |
+
st.toast(f"Inference completed!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
CHANGED
@@ -8,13 +8,20 @@ def current_seconds_time():
|
|
8 |
return round(time.time())
|
9 |
|
10 |
|
11 |
-
def upload_predictions(repo_id, predictions, model_name):
|
12 |
api = HfApi()
|
13 |
|
|
|
14 |
predictions_filename = (
|
15 |
-
f"predictions_{
|
16 |
)
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
with open(predictions_filename, "w") as f:
|
20 |
json.dump(predictions_object, f)
|
|
|
8 |
return round(time.time())
|
9 |
|
10 |
|
11 |
+
def upload_predictions(repo_id, predictions, model_name, inference_function):
|
12 |
api = HfApi()
|
13 |
|
14 |
+
timestamp = current_seconds_time()
|
15 |
predictions_filename = (
|
16 |
+
f"predictions_{timestamp}_{re.sub('/', '_', model_name)}.json"
|
17 |
)
|
18 |
+
|
19 |
+
predictions_object = {
|
20 |
+
"model_name": model_name,
|
21 |
+
"predictions": predictions,
|
22 |
+
"timestamp": timestamp,
|
23 |
+
"inference_function": inference_function,
|
24 |
+
}
|
25 |
|
26 |
with open(predictions_filename, "w") as f:
|
27 |
json.dump(predictions_object, f)
|