Spaces:
Runtime error
Runtime error
Delete old_app.py
Browse files- old_app.py +0 -126
old_app.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import tensorflow as tf
|
3 |
-
import numpy as np
|
4 |
-
from scipy.spatial.distance import cosine
|
5 |
-
import cv2
|
6 |
-
import os
|
7 |
-
|
8 |
-
from tensorflow.keras.applications import resnet
|
9 |
-
from tensorflow.keras import layers, Model
|
10 |
-
|
11 |
-
def create_embedding_model():
|
12 |
-
base_cnn = resnet.ResNet50(weights="imagenet", input_shape=(200, 200, 3), include_top=False)
|
13 |
-
|
14 |
-
flatten = layers.Flatten()(base_cnn.output)
|
15 |
-
dense1 = layers.Dense(512, activation="relu")(flatten)
|
16 |
-
dense1 = layers.BatchNormalization()(dense1)
|
17 |
-
dense2 = layers.Dense(256, activation="relu")(dense1)
|
18 |
-
dense2 = layers.BatchNormalization()(dense2)
|
19 |
-
output = layers.Dense(256)(dense2)
|
20 |
-
|
21 |
-
embedding_model = Model(base_cnn.input, output, name="Embedding")
|
22 |
-
|
23 |
-
trainable = False
|
24 |
-
for layer in base_cnn.layers:
|
25 |
-
if layer.name == "conv5_block1_out":
|
26 |
-
trainable = True
|
27 |
-
layer.trainable = trainable
|
28 |
-
|
29 |
-
return embedding_model
|
30 |
-
|
31 |
-
# K-mean Clustering
|
32 |
-
from sklearn.cluster import KMeans
|
33 |
-
import matplotlib.pyplot as plt
|
34 |
-
|
35 |
-
# Threshold
|
36 |
-
RECOGNITION_THRESHOLD = 0.1 # Adjust as needed
|
37 |
-
n_clusters = 5 # You can adjust this based on your data
|
38 |
-
kmeans = KMeans(n_clusters=n_clusters)
|
39 |
-
|
40 |
-
# Load the embedding model
|
41 |
-
# embedding_model = tf.keras.models.load_model('base_128.h5')
|
42 |
-
embedding_model = create_embedding_model()
|
43 |
-
embedding_model.load_weights('base_128.h5')
|
44 |
-
|
45 |
-
# Database to store embeddings and user IDs
|
46 |
-
user_embeddings = []
|
47 |
-
user_ids = []
|
48 |
-
|
49 |
-
# Preprocess the image
|
50 |
-
def preprocess_image(image):
|
51 |
-
image = cv2.resize(image, (200, 200)) # Resize image to 200x200
|
52 |
-
image = tf.keras.applications.resnet50.preprocess_input(image)
|
53 |
-
return np.expand_dims(image, axis=0)
|
54 |
-
|
55 |
-
# Generate embedding
|
56 |
-
def generate_embedding(image):
|
57 |
-
preprocessed_image = preprocess_image(image)
|
58 |
-
return embedding_model.predict(preprocessed_image)[0]
|
59 |
-
|
60 |
-
# Register new user
|
61 |
-
def register_user(image, user_id):
|
62 |
-
try:
|
63 |
-
embedding = generate_embedding(image)
|
64 |
-
user_embeddings.append(embedding)
|
65 |
-
user_ids.append(user_id)
|
66 |
-
return f"User {user_id} registered successfully."
|
67 |
-
except Exception as e:
|
68 |
-
return f"Error during registration: {str(e)}"
|
69 |
-
|
70 |
-
# Recognize user
|
71 |
-
def recognize_user(image):
|
72 |
-
try:
|
73 |
-
new_embedding = generate_embedding(image)
|
74 |
-
|
75 |
-
if len(user_embeddings) < n_clusters:
|
76 |
-
# Handle the case where there are not enough users for K-means
|
77 |
-
# For example, you could use nearest neighbor search among existing embeddings
|
78 |
-
# Here, I'm just returning a message for simplicity
|
79 |
-
return "Not enough registered users for recognition."
|
80 |
-
|
81 |
-
# Update the KMeans model
|
82 |
-
kmeans.fit(user_embeddings)
|
83 |
-
cluster_label = kmeans.predict([new_embedding])[0]
|
84 |
-
distances = kmeans.transform([new_embedding])[0]
|
85 |
-
min_distance = np.min(distances)
|
86 |
-
|
87 |
-
if min_distance > RECOGNITION_THRESHOLD:
|
88 |
-
return "User not recognized."
|
89 |
-
|
90 |
-
# Find the user ID(s) in the closest cluster
|
91 |
-
recognized_user_ids = [user_ids[i] for i, label in enumerate(kmeans.labels_) if label == cluster_label]
|
92 |
-
return f"Recognized User(s): {', '.join(recognized_user_ids)}"
|
93 |
-
except Exception as e:
|
94 |
-
return f"Error during recognition: {str(e)}"
|
95 |
-
|
96 |
-
def plot_clusters():
|
97 |
-
# Assuming embeddings are 2-dimensional
|
98 |
-
plt.figure(figsize=(8, 6))
|
99 |
-
plt.scatter(*zip(*user_embeddings), c=kmeans.labels_)
|
100 |
-
plt.title('User Embeddings Clustered by K-Means')
|
101 |
-
plt.xlabel('Embedding Dimension 1')
|
102 |
-
plt.ylabel('Embedding Dimension 2')
|
103 |
-
plt.show()
|
104 |
-
|
105 |
-
def main():
|
106 |
-
with gr.Blocks() as demo:
|
107 |
-
gr.Markdown("Facial Recognition System")
|
108 |
-
with gr.Tab("Register"):
|
109 |
-
with gr.Row():
|
110 |
-
img_register = gr.Image()
|
111 |
-
user_id = gr.Textbox(label="User ID")
|
112 |
-
register_button = gr.Button("Register")
|
113 |
-
register_output = gr.Textbox()
|
114 |
-
register_button.click(register_user, inputs=[img_register, user_id], outputs=register_output)
|
115 |
-
|
116 |
-
with gr.Tab("Recognize"):
|
117 |
-
with gr.Row():
|
118 |
-
img_recognize = gr.Image()
|
119 |
-
recognize_button = gr.Button("Recognize")
|
120 |
-
recognize_output = gr.Textbox()
|
121 |
-
recognize_button.click(recognize_user, inputs=[img_recognize], outputs=recognize_output)
|
122 |
-
|
123 |
-
demo.launch(share=True)
|
124 |
-
|
125 |
-
if __name__ == "__main__":
|
126 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|