Update modules/semantic/semantic_live_interface.py
Browse files
modules/semantic/semantic_live_interface.py
CHANGED
@@ -13,14 +13,11 @@ from .semantic_process import (
|
|
13 |
process_semantic_input,
|
14 |
format_semantic_results
|
15 |
)
|
16 |
-
|
17 |
from ..utils.widget_utils import generate_unique_key
|
18 |
-
#
|
19 |
from ..database.semantic_mongo_live_db import store_student_semantic_live_result
|
20 |
-
#
|
21 |
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
22 |
|
23 |
-
####################################################################################
|
24 |
def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
25 |
"""
|
26 |
Interfaz para el análisis semántico en vivo con proporciones de columna ajustadas
|
@@ -32,7 +29,8 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
32 |
'analysis_count': 0,
|
33 |
'current_text': '',
|
34 |
'last_result': None,
|
35 |
-
'text_changed': False
|
|
|
36 |
}
|
37 |
|
38 |
# 2. Función para manejar cambios en el texto
|
@@ -55,7 +53,7 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
55 |
key="semantic_live_text",
|
56 |
value=st.session_state.semantic_live_state.get('current_text', ''),
|
57 |
on_change=on_text_change,
|
58 |
-
label_visibility="collapsed"
|
59 |
)
|
60 |
|
61 |
# Botón de análisis y procesamiento
|
@@ -68,7 +66,13 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
68 |
use_container_width=True
|
69 |
)
|
70 |
|
|
|
71 |
if analyze_button and text_input:
|
|
|
|
|
|
|
|
|
|
|
72 |
try:
|
73 |
with st.spinner(semantic_t.get('processing', 'Procesando...')):
|
74 |
analysis_result = process_semantic_input(
|
@@ -83,17 +87,26 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
83 |
st.session_state.semantic_live_state['analysis_count'] += 1
|
84 |
st.session_state.semantic_live_state['text_changed'] = False
|
85 |
|
86 |
-
|
|
|
87 |
st.session_state.username,
|
88 |
text_input,
|
89 |
-
analysis_result['analysis']
|
|
|
90 |
)
|
|
|
|
|
|
|
|
|
|
|
91 |
else:
|
92 |
st.error(analysis_result.get('message', 'Error en el análisis'))
|
93 |
|
94 |
except Exception as e:
|
95 |
logger.error(f"Error en análisis: {str(e)}")
|
96 |
st.error(semantic_t.get('error_processing', 'Error al procesar el texto'))
|
|
|
|
|
97 |
|
98 |
# Columna derecha: Visualización de resultados
|
99 |
with result_col:
|
@@ -119,31 +132,31 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
119 |
}
|
120 |
.concept-table {
|
121 |
display: flex;
|
122 |
-
flex-wrap: nowrap;
|
123 |
-
gap: 6px;
|
124 |
padding: 10px;
|
125 |
background-color: #f8f9fa;
|
126 |
-
overflow-x: auto;
|
127 |
-
white-space: nowrap;
|
128 |
}
|
129 |
.concept-item {
|
130 |
background-color: white;
|
131 |
border-radius: 4px;
|
132 |
-
padding: 4px 8px;
|
133 |
-
display: inline-flex;
|
134 |
align-items: center;
|
135 |
-
gap: 4px;
|
136 |
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
137 |
-
flex-shrink: 0;
|
138 |
}
|
139 |
.concept-name {
|
140 |
font-weight: 500;
|
141 |
color: #1f2937;
|
142 |
-
font-size: 0.8em;
|
143 |
}
|
144 |
.concept-freq {
|
145 |
color: #6b7280;
|
146 |
-
font-size: 0.75em;
|
147 |
}
|
148 |
.graph-section {
|
149 |
padding: 20px;
|
@@ -173,28 +186,51 @@ def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
173 |
use_container_width=True
|
174 |
)
|
175 |
|
176 |
-
#
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
st.download_button(
|
180 |
-
label="📥 " + semantic_t.get('download_graph', "
|
181 |
data=analysis['concept_graph'],
|
182 |
file_name="semantic_live_graph.png",
|
183 |
mime="image/png",
|
184 |
use_container_width=True
|
185 |
)
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
188 |
st.markdown("""
|
189 |
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
190 |
-
- 🎨 Los colores más intensos indican conceptos más centrales
|
191 |
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
192 |
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
193 |
""")
|
194 |
else:
|
195 |
st.info(semantic_t.get('no_graph', 'No hay datos para mostrar'))
|
|
|
|
|
196 |
|
197 |
except Exception as e:
|
198 |
logger.error(f"Error general en interfaz semántica en vivo: {str(e)}")
|
199 |
-
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
200 |
-
|
|
|
13 |
process_semantic_input,
|
14 |
format_semantic_results
|
15 |
)
|
16 |
+
|
17 |
from ..utils.widget_utils import generate_unique_key
|
|
|
18 |
from ..database.semantic_mongo_live_db import store_student_semantic_live_result
|
|
|
19 |
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
20 |
|
|
|
21 |
def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
22 |
"""
|
23 |
Interfaz para el análisis semántico en vivo con proporciones de columna ajustadas
|
|
|
29 |
'analysis_count': 0,
|
30 |
'current_text': '',
|
31 |
'last_result': None,
|
32 |
+
'text_changed': False,
|
33 |
+
'pending_analysis': False # Nuevo flag para análisis pendiente
|
34 |
}
|
35 |
|
36 |
# 2. Función para manejar cambios en el texto
|
|
|
53 |
key="semantic_live_text",
|
54 |
value=st.session_state.semantic_live_state.get('current_text', ''),
|
55 |
on_change=on_text_change,
|
56 |
+
label_visibility="collapsed"
|
57 |
)
|
58 |
|
59 |
# Botón de análisis y procesamiento
|
|
|
66 |
use_container_width=True
|
67 |
)
|
68 |
|
69 |
+
# 4. Procesar análisis cuando se presiona el botón
|
70 |
if analyze_button and text_input:
|
71 |
+
st.session_state.semantic_live_state['pending_analysis'] = True
|
72 |
+
st.rerun()
|
73 |
+
|
74 |
+
# 5. Manejar análisis pendiente
|
75 |
+
if st.session_state.semantic_live_state.get('pending_analysis', False):
|
76 |
try:
|
77 |
with st.spinner(semantic_t.get('processing', 'Procesando...')):
|
78 |
analysis_result = process_semantic_input(
|
|
|
87 |
st.session_state.semantic_live_state['analysis_count'] += 1
|
88 |
st.session_state.semantic_live_state['text_changed'] = False
|
89 |
|
90 |
+
# Guardar en la colección live
|
91 |
+
store_result = store_student_semantic_live_result(
|
92 |
st.session_state.username,
|
93 |
text_input,
|
94 |
+
analysis_result['analysis'],
|
95 |
+
lang_code
|
96 |
)
|
97 |
+
|
98 |
+
if not store_result:
|
99 |
+
st.error(semantic_t.get('error_saving', 'Error al guardar el análisis'))
|
100 |
+
else:
|
101 |
+
st.success(semantic_t.get('analysis_saved', 'Análisis guardado correctamente'))
|
102 |
else:
|
103 |
st.error(analysis_result.get('message', 'Error en el análisis'))
|
104 |
|
105 |
except Exception as e:
|
106 |
logger.error(f"Error en análisis: {str(e)}")
|
107 |
st.error(semantic_t.get('error_processing', 'Error al procesar el texto'))
|
108 |
+
finally:
|
109 |
+
st.session_state.semantic_live_state['pending_analysis'] = False
|
110 |
|
111 |
# Columna derecha: Visualización de resultados
|
112 |
with result_col:
|
|
|
132 |
}
|
133 |
.concept-table {
|
134 |
display: flex;
|
135 |
+
flex-wrap: nowrap;
|
136 |
+
gap: 6px;
|
137 |
padding: 10px;
|
138 |
background-color: #f8f9fa;
|
139 |
+
overflow-x: auto;
|
140 |
+
white-space: nowrap;
|
141 |
}
|
142 |
.concept-item {
|
143 |
background-color: white;
|
144 |
border-radius: 4px;
|
145 |
+
padding: 4px 8px;
|
146 |
+
display: inline-flex;
|
147 |
align-items: center;
|
148 |
+
gap: 4px;
|
149 |
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
150 |
+
flex-shrink: 0;
|
151 |
}
|
152 |
.concept-name {
|
153 |
font-weight: 500;
|
154 |
color: #1f2937;
|
155 |
+
font-size: 0.8em;
|
156 |
}
|
157 |
.concept-freq {
|
158 |
color: #6b7280;
|
159 |
+
font-size: 0.75em;
|
160 |
}
|
161 |
.graph-section {
|
162 |
padding: 20px;
|
|
|
186 |
use_container_width=True
|
187 |
)
|
188 |
|
189 |
+
# Controles en dos columnas
|
190 |
+
col1, col2 = st.columns([1, 3])
|
191 |
+
|
192 |
+
with col1:
|
193 |
+
# Botón para consultar con el asistente (NUEVO)
|
194 |
+
if st.button("💬 Consultar con Asistente",
|
195 |
+
key="semantic_live_chat_button",
|
196 |
+
use_container_width=True):
|
197 |
+
if 'last_result' not in st.session_state.semantic_live_state:
|
198 |
+
st.error("Primero complete el análisis semántico")
|
199 |
+
else:
|
200 |
+
st.session_state.semantic_agent_data = {
|
201 |
+
'text': st.session_state.semantic_live_state['current_text'],
|
202 |
+
'metrics': analysis,
|
203 |
+
'graph_data': analysis.get('concept_graph')
|
204 |
+
}
|
205 |
+
st.session_state.semantic_agent_active = True
|
206 |
+
st.rerun()
|
207 |
+
|
208 |
+
# Botón de descarga
|
209 |
st.download_button(
|
210 |
+
label="📥 " + semantic_t.get('download_graph', "Descargar"),
|
211 |
data=analysis['concept_graph'],
|
212 |
file_name="semantic_live_graph.png",
|
213 |
mime="image/png",
|
214 |
use_container_width=True
|
215 |
)
|
216 |
|
217 |
+
# Notificación si el agente está activo
|
218 |
+
if st.session_state.get('semantic_agent_active', False):
|
219 |
+
st.success(semantic_t.get('semantic_agent_ready_message',
|
220 |
+
'El agente virtual está listo. Abre el chat en la barra lateral.'))
|
221 |
+
|
222 |
+
with st.expander("📊 " + semantic_t.get('graph_help', "Interpretación del gráfico")):
|
223 |
st.markdown("""
|
224 |
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
225 |
+
- 🎨 Los colores más intensos indican conceptos más centrales
|
226 |
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
227 |
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
228 |
""")
|
229 |
else:
|
230 |
st.info(semantic_t.get('no_graph', 'No hay datos para mostrar'))
|
231 |
+
else:
|
232 |
+
st.info(semantic_t.get('analysis_prompt', 'Realice un análisis para ver los resultados'))
|
233 |
|
234 |
except Exception as e:
|
235 |
logger.error(f"Error general en interfaz semántica en vivo: {str(e)}")
|
236 |
+
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
|