Update modules/database/semantic_mongo_live_db.py
Browse files
modules/database/semantic_mongo_live_db.py
CHANGED
@@ -2,63 +2,115 @@
|
|
2 |
import logging
|
3 |
from datetime import datetime, timezone
|
4 |
import base64
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
-
from .mongo_db import get_collection, insert_document, find_documents
|
8 |
-
|
9 |
logger = logging.getLogger(__name__)
|
10 |
COLLECTION_NAME = 'student_semantic_live_analysis'
|
11 |
|
12 |
def store_student_semantic_live_result(username, text, analysis_result, lang_code='en'):
|
13 |
"""
|
14 |
Guarda el resultado del análisis semántico en vivo en MongoDB.
|
|
|
15 |
"""
|
16 |
try:
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
return False
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
concept_graph_data = None
|
23 |
if 'concept_graph' in analysis_result and analysis_result['concept_graph'] is not None:
|
24 |
try:
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
else:
|
28 |
-
logger.warning("
|
29 |
except Exception as e:
|
30 |
-
logger.error(f"Error al
|
|
|
31 |
|
32 |
-
#
|
33 |
analysis_document = {
|
34 |
'username': username,
|
35 |
'timestamp': datetime.now(timezone.utc),
|
36 |
-
'text': text,
|
37 |
'analysis_type': 'semantic_live',
|
38 |
-
'
|
39 |
-
'
|
40 |
-
|
41 |
-
|
|
|
42 |
}
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
except Exception as e:
|
54 |
-
logger.error(f"Error al guardar
|
55 |
return False
|
56 |
|
57 |
def get_student_semantic_live_analysis(username, limit=10):
|
58 |
"""
|
59 |
Recupera los análisis semánticos en vivo de un estudiante.
|
|
|
60 |
"""
|
61 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
query = {
|
63 |
"username": username,
|
64 |
"analysis_type": "semantic_live"
|
@@ -66,25 +118,42 @@ def get_student_semantic_live_analysis(username, limit=10):
|
|
66 |
|
67 |
projection = {
|
68 |
"timestamp": 1,
|
69 |
-
"text":
|
70 |
-
"key_concepts":
|
71 |
"concept_graph": 1,
|
72 |
-
"_id": 1
|
|
|
73 |
}
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
-
logger.error(f"Error
|
88 |
return []
|
89 |
|
90 |
__all__ = [
|
|
|
2 |
import logging
|
3 |
from datetime import datetime, timezone
|
4 |
import base64
|
5 |
+
from bson import Binary
|
6 |
+
from pymongo.errors import PyMongoError
|
7 |
|
8 |
+
# Configuración del logger
|
|
|
|
|
9 |
logger = logging.getLogger(__name__)
|
10 |
COLLECTION_NAME = 'student_semantic_live_analysis'
|
11 |
|
12 |
def store_student_semantic_live_result(username, text, analysis_result, lang_code='en'):
|
13 |
"""
|
14 |
Guarda el resultado del análisis semántico en vivo en MongoDB.
|
15 |
+
Versión mejorada con manejo robusto de errores y verificación de datos.
|
16 |
"""
|
17 |
try:
|
18 |
+
# 1. Validación exhaustiva de los parámetros de entrada
|
19 |
+
if not username or not isinstance(username, str):
|
20 |
+
logger.error("Nombre de usuario inválido o vacío")
|
21 |
+
return False
|
22 |
+
|
23 |
+
if not text or not isinstance(text, str):
|
24 |
+
logger.error("Texto de análisis inválido o vacío")
|
25 |
return False
|
26 |
|
27 |
+
if not analysis_result or not isinstance(analysis_result, dict):
|
28 |
+
logger.error("Resultado de análisis inválido o vacío")
|
29 |
+
return False
|
30 |
+
|
31 |
+
# 2. Preparación del gráfico conceptual con múltiples formatos soportados
|
32 |
concept_graph_data = None
|
33 |
if 'concept_graph' in analysis_result and analysis_result['concept_graph'] is not None:
|
34 |
try:
|
35 |
+
graph_data = analysis_result['concept_graph']
|
36 |
+
|
37 |
+
if isinstance(graph_data, bytes):
|
38 |
+
# Codificar a base64 para almacenamiento eficiente
|
39 |
+
concept_graph_data = base64.b64encode(graph_data).decode('utf-8')
|
40 |
+
elif isinstance(graph_data, str):
|
41 |
+
# Si ya es string (base64), usarlo directamente
|
42 |
+
concept_graph_data = graph_data
|
43 |
+
elif isinstance(graph_data, Binary):
|
44 |
+
# Si es Binary de pymongo, convertirlo
|
45 |
+
concept_graph_data = base64.b64encode(graph_data).decode('utf-8')
|
46 |
else:
|
47 |
+
logger.warning(f"Formato de gráfico no soportado: {type(graph_data)}")
|
48 |
except Exception as e:
|
49 |
+
logger.error(f"Error al procesar gráfico conceptual: {str(e)}", exc_info=True)
|
50 |
+
# Continuar sin gráfico en lugar de fallar completamente
|
51 |
|
52 |
+
# 3. Preparación del documento con validación de campos
|
53 |
analysis_document = {
|
54 |
'username': username,
|
55 |
'timestamp': datetime.now(timezone.utc),
|
56 |
+
'text': text[:10000], # Limitar tamaño para prevenir documentos muy grandes
|
57 |
'analysis_type': 'semantic_live',
|
58 |
+
'language': lang_code,
|
59 |
+
'metadata': {
|
60 |
+
'version': '1.0',
|
61 |
+
'source': 'live_interface'
|
62 |
+
}
|
63 |
}
|
64 |
|
65 |
+
# Campos opcionales con validación
|
66 |
+
if 'key_concepts' in analysis_result and isinstance(analysis_result['key_concepts'], list):
|
67 |
+
analysis_document['key_concepts'] = analysis_result['key_concepts'][:50] # Limitar a 50 conceptos
|
68 |
+
|
69 |
+
if 'concept_centrality' in analysis_result and isinstance(analysis_result['concept_centrality'], dict):
|
70 |
+
analysis_document['concept_centrality'] = analysis_result['concept_centrality']
|
71 |
+
|
72 |
+
if concept_graph_data:
|
73 |
+
analysis_document['concept_graph'] = concept_graph_data
|
74 |
+
|
75 |
+
# 4. Operación de base de datos con manejo de errores específico
|
76 |
+
try:
|
77 |
+
collection = get_collection(COLLECTION_NAME)
|
78 |
+
if not collection:
|
79 |
+
logger.error("No se pudo obtener la colección MongoDB")
|
80 |
+
return False
|
81 |
+
|
82 |
+
result = collection.insert_one(analysis_document)
|
83 |
+
|
84 |
+
if result.inserted_id:
|
85 |
+
logger.info(f"Análisis guardado exitosamente para {username}. ID: {result.inserted_id}")
|
86 |
+
return True
|
87 |
+
|
88 |
+
logger.error("La operación de inserción no devolvió un ID")
|
89 |
+
return False
|
90 |
+
|
91 |
+
except PyMongoError as mongo_error:
|
92 |
+
logger.error(f"Error de MongoDB al guardar análisis: {str(mongo_error)}", exc_info=True)
|
93 |
+
return False
|
94 |
|
95 |
except Exception as e:
|
96 |
+
logger.error(f"Error inesperado al guardar análisis: {str(e)}", exc_info=True)
|
97 |
return False
|
98 |
|
99 |
def get_student_semantic_live_analysis(username, limit=10):
|
100 |
"""
|
101 |
Recupera los análisis semánticos en vivo de un estudiante.
|
102 |
+
Versión mejorada con paginación y manejo de errores.
|
103 |
"""
|
104 |
try:
|
105 |
+
# Validación de parámetros
|
106 |
+
if not username or not isinstance(username, str):
|
107 |
+
logger.error("Nombre de usuario inválido para recuperación")
|
108 |
+
return []
|
109 |
+
|
110 |
+
if not isinstance(limit, int) or limit <= 0:
|
111 |
+
limit = 10 # Valor por defecto si el límite es inválido
|
112 |
+
|
113 |
+
# Consulta con proyección para optimizar transferencia
|
114 |
query = {
|
115 |
"username": username,
|
116 |
"analysis_type": "semantic_live"
|
|
|
118 |
|
119 |
projection = {
|
120 |
"timestamp": 1,
|
121 |
+
"text": {"$substr": ["$text", 0, 200]}, # Solo primeros 200 caracteres
|
122 |
+
"key_concepts": {"$slice": ["$key_concepts", 10]}, # Solo primeros 10 conceptos
|
123 |
"concept_graph": 1,
|
124 |
+
"_id": 1,
|
125 |
+
"metadata": 1
|
126 |
}
|
127 |
|
128 |
+
# Operación de base de datos con manejo de errores
|
129 |
+
try:
|
130 |
+
collection = get_collection(COLLECTION_NAME)
|
131 |
+
if not collection:
|
132 |
+
logger.error("No se pudo obtener la colección MongoDB")
|
133 |
+
return []
|
134 |
+
|
135 |
+
cursor = collection.find(query, projection).sort("timestamp", -1).limit(limit)
|
136 |
+
results = list(cursor)
|
137 |
+
|
138 |
+
# Post-procesamiento para asegurar formato consistente
|
139 |
+
for doc in results:
|
140 |
+
if 'concept_graph' in doc and isinstance(doc['concept_graph'], str):
|
141 |
+
try:
|
142 |
+
# Convertir base64 string a bytes para compatibilidad
|
143 |
+
doc['concept_graph'] = base64.b64decode(doc['concept_graph'])
|
144 |
+
except Exception as e:
|
145 |
+
logger.warning(f"Error al decodificar gráfico: {str(e)}")
|
146 |
+
doc.pop('concept_graph', None)
|
147 |
+
|
148 |
+
logger.info(f"Recuperados {len(results)} análisis para {username}")
|
149 |
+
return results
|
150 |
+
|
151 |
+
except PyMongoError as mongo_error:
|
152 |
+
logger.error(f"Error de MongoDB al recuperar análisis: {str(mongo_error)}")
|
153 |
+
return []
|
154 |
+
|
155 |
except Exception as e:
|
156 |
+
logger.error(f"Error inesperado al recuperar análisis: {str(e)}", exc_info=True)
|
157 |
return []
|
158 |
|
159 |
__all__ = [
|