|
|
|
import streamlit as st
|
|
from streamlit_float import *
|
|
from streamlit_antd_components import *
|
|
import pandas as pd
|
|
import logging
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
from .semantic_process import (
|
|
process_semantic_input,
|
|
format_semantic_results
|
|
)
|
|
|
|
from ..utils.widget_utils import generate_unique_key
|
|
from ..database.semantic_mongo_db import store_student_semantic_result
|
|
from ..database.chat_mongo_db import store_chat_history, get_chat_history
|
|
|
|
def display_semantic_live_interface(lang_code, nlp_models, semantic_t):
|
|
"""
|
|
Interfaz para el análisis semántico en vivo con proporciones de columna ajustadas
|
|
"""
|
|
try:
|
|
|
|
if 'semantic_live_state' not in st.session_state:
|
|
st.session_state.semantic_live_state = {
|
|
'analysis_count': 0,
|
|
'current_text': '',
|
|
'last_result': None,
|
|
'text_changed': False
|
|
}
|
|
|
|
|
|
def on_text_change():
|
|
current_text = st.session_state.semantic_live_text
|
|
st.session_state.semantic_live_state['current_text'] = current_text
|
|
st.session_state.semantic_live_state['text_changed'] = True
|
|
|
|
|
|
input_col, result_col = st.columns([1, 3])
|
|
|
|
|
|
with input_col:
|
|
st.subheader(semantic_t.get('enter_text', 'Ingrese su texto'))
|
|
|
|
|
|
text_input = st.text_area(
|
|
semantic_t.get('text_input_label', 'Escriba o pegue su texto aquí'),
|
|
height=500,
|
|
key="semantic_live_text",
|
|
value=st.session_state.semantic_live_state.get('current_text', ''),
|
|
on_change=on_text_change,
|
|
label_visibility="collapsed"
|
|
)
|
|
|
|
|
|
analyze_button = st.button(
|
|
semantic_t.get('analyze_button', 'Analizar'),
|
|
key="semantic_live_analyze",
|
|
type="primary",
|
|
icon="🔍",
|
|
disabled=not text_input,
|
|
use_container_width=True
|
|
)
|
|
|
|
if analyze_button and text_input:
|
|
try:
|
|
with st.spinner(semantic_t.get('processing', 'Procesando...')):
|
|
analysis_result = process_semantic_input(
|
|
text_input,
|
|
lang_code,
|
|
nlp_models,
|
|
semantic_t
|
|
)
|
|
|
|
if analysis_result['success']:
|
|
st.session_state.semantic_live_state['last_result'] = analysis_result
|
|
st.session_state.semantic_live_state['analysis_count'] += 1
|
|
st.session_state.semantic_live_state['text_changed'] = False
|
|
|
|
store_student_semantic_result(
|
|
st.session_state.username,
|
|
text_input,
|
|
analysis_result['analysis']
|
|
)
|
|
else:
|
|
st.error(analysis_result.get('message', 'Error en el análisis'))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error en análisis: {str(e)}")
|
|
st.error(semantic_t.get('error_processing', 'Error al procesar el texto'))
|
|
|
|
|
|
with result_col:
|
|
st.subheader(semantic_t.get('live_results', 'Resultados en vivo'))
|
|
|
|
if 'last_result' in st.session_state.semantic_live_state and \
|
|
st.session_state.semantic_live_state['last_result'] is not None:
|
|
|
|
analysis = st.session_state.semantic_live_state['last_result']['analysis']
|
|
|
|
if 'key_concepts' in analysis and analysis['key_concepts'] and \
|
|
'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
|
|
|
st.markdown("""
|
|
<style>
|
|
.unified-container {
|
|
background-color: white;
|
|
border-radius: 10px;
|
|
overflow: hidden;
|
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
|
width: 100%;
|
|
margin-bottom: 1rem;
|
|
}
|
|
.concept-table {
|
|
display: flex;
|
|
flex-wrap: nowrap; /* Evita el wrap */
|
|
gap: 6px; /* Reducido el gap */
|
|
padding: 10px;
|
|
background-color: #f8f9fa;
|
|
overflow-x: auto; /* Permite scroll horizontal si es necesario */
|
|
white-space: nowrap; /* Mantiene todo en una línea */
|
|
}
|
|
.concept-item {
|
|
background-color: white;
|
|
border-radius: 4px;
|
|
padding: 4px 8px; /* Padding reducido */
|
|
display: inline-flex; /* Cambiado a inline-flex */
|
|
align-items: center;
|
|
gap: 4px; /* Gap reducido */
|
|
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
|
flex-shrink: 0; /* Evita que los items se encojan */
|
|
}
|
|
.concept-name {
|
|
font-weight: 500;
|
|
color: #1f2937;
|
|
font-size: 0.8em; /* Tamaño de fuente reducido */
|
|
}
|
|
.concept-freq {
|
|
color: #6b7280;
|
|
font-size: 0.75em; /* Tamaño de fuente reducido */
|
|
}
|
|
.graph-section {
|
|
padding: 20px;
|
|
background-color: white;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
with st.container():
|
|
|
|
concepts_html = """
|
|
<div class="unified-container">
|
|
<div class="concept-table">
|
|
"""
|
|
concepts_html += ''.join(
|
|
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
|
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
|
for concept, freq in analysis['key_concepts']
|
|
)
|
|
concepts_html += "</div></div>"
|
|
st.markdown(concepts_html, unsafe_allow_html=True)
|
|
|
|
|
|
if 'concept_graph' in analysis and analysis['concept_graph'] is not None:
|
|
st.image(
|
|
analysis['concept_graph'],
|
|
use_container_width=True
|
|
)
|
|
|
|
|
|
button_col, spacer_col = st.columns([1,5])
|
|
with button_col:
|
|
st.download_button(
|
|
label="📥 " + semantic_t.get('download_graph', "Download"),
|
|
data=analysis['concept_graph'],
|
|
file_name="semantic_live_graph.png",
|
|
mime="image/png",
|
|
use_container_width=True
|
|
)
|
|
|
|
with st.expander("📊 " + semantic_t.get('graph_help', "Graph Interpretation")):
|
|
st.markdown("""
|
|
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
|
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
|
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
|
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
|
""")
|
|
else:
|
|
st.info(semantic_t.get('no_graph', 'No hay datos para mostrar'))
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error general en interfaz semántica en vivo: {str(e)}")
|
|
st.error(semantic_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
|
|
|
|