Spaces:
Running
Running
Update modules/studentact/student_activities_v2.py
Browse files
modules/studentact/student_activities_v2.py
CHANGED
|
@@ -535,241 +535,114 @@ def display_semantic_activities(username: str, t: dict):
|
|
| 535 |
|
| 536 |
|
| 537 |
###################################################################################################
|
|
|
|
| 538 |
def display_discourse_activities(username: str, t: dict):
|
| 539 |
"""
|
| 540 |
-
Muestra actividades de análisis del discurso
|
| 541 |
"""
|
| 542 |
try:
|
| 543 |
logger.info(f"Recuperando análisis del discurso para {username}")
|
| 544 |
-
|
| 545 |
-
# Obtener análisis del discurso con el tipo correcto
|
| 546 |
-
from ..database.discourse_mongo_db import get_student_discourse_analysis
|
| 547 |
analyses = get_student_discourse_analysis(username)
|
| 548 |
|
| 549 |
if not analyses:
|
| 550 |
logger.info("No se encontraron análisis del discurso")
|
| 551 |
-
# Usamos el término "análisis comparado de textos" en la UI
|
| 552 |
st.info(t.get('no_discourse_analyses', 'No hay análisis comparados de textos registrados'))
|
| 553 |
return
|
| 554 |
|
| 555 |
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
| 556 |
for analysis in analyses:
|
| 557 |
try:
|
| 558 |
-
# Verificar campos mínimos necesarios
|
| 559 |
-
if 'timestamp' not in analysis:
|
| 560 |
-
logger.warning(f"Análisis sin timestamp: {analysis.keys()}")
|
| 561 |
-
continue
|
| 562 |
-
|
| 563 |
# Formatear fecha
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
| 567 |
-
except Exception as e:
|
| 568 |
-
logger.error(f"Error al formatear timestamp: {str(e)}")
|
| 569 |
-
formatted_date = str(analysis.get('timestamp', 'Fecha desconocida'))
|
| 570 |
|
| 571 |
-
#
|
| 572 |
expander_title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
|
| 573 |
|
| 574 |
with st.expander(expander_title, expanded=False):
|
| 575 |
-
#
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
#
|
| 583 |
-
|
| 584 |
-
if 'text1' in analysis and analysis['text1']:
|
| 585 |
-
st.text_area(
|
| 586 |
-
"Texto 1",
|
| 587 |
-
value=analysis['text1'],
|
| 588 |
-
height=150,
|
| 589 |
-
disabled=True,
|
| 590 |
-
label_visibility="collapsed",
|
| 591 |
-
key=f"text1_{str(analysis['_id'])}"
|
| 592 |
-
)
|
| 593 |
-
|
| 594 |
-
# Mostrar conceptos clave del texto 1
|
| 595 |
-
if 'key_concepts1' in analysis and analysis['key_concepts1']:
|
| 596 |
-
st.subheader(t.get('key_concepts1', 'Conceptos clave (Texto 1)'))
|
| 597 |
-
|
| 598 |
-
# Crear una tabla/dataframe de conceptos
|
| 599 |
-
concept_data = analysis['key_concepts1']
|
| 600 |
-
if concept_data and len(concept_data) > 0:
|
| 601 |
-
# Verificar formato de los datos
|
| 602 |
-
if isinstance(concept_data[0], list) and len(concept_data[0]) == 2:
|
| 603 |
-
# Formato esperado: [["concepto", valor], ...]
|
| 604 |
-
df = pd.DataFrame(concept_data, columns=['Concepto', 'Relevancia'])
|
| 605 |
-
st.dataframe(df, use_container_width=True)
|
| 606 |
-
else:
|
| 607 |
-
st.write(concept_data) # Mostrar como está si no tiene el formato esperado
|
| 608 |
-
else:
|
| 609 |
-
st.info(t.get('no_concepts1', 'No hay conceptos clave disponibles para el Texto 1'))
|
| 610 |
-
|
| 611 |
-
# Mostrar gráfico si existe
|
| 612 |
-
if 'graph1' in analysis and analysis['graph1']:
|
| 613 |
-
st.subheader(t.get('graph1', 'Visualización del Texto 1'))
|
| 614 |
-
try:
|
| 615 |
-
if isinstance(analysis['graph1'], str) and analysis['graph1'].startswith('data:image'):
|
| 616 |
-
# Manejo para string base64
|
| 617 |
-
import base64
|
| 618 |
-
image_bytes = base64.b64decode(analysis['graph1'].split(',')[1])
|
| 619 |
-
st.image(image_bytes, use_column_width=True)
|
| 620 |
-
elif isinstance(analysis['graph1'], bytes):
|
| 621 |
-
# Manejo para bytes directos
|
| 622 |
-
st.image(analysis['graph1'], use_column_width=True)
|
| 623 |
-
else:
|
| 624 |
-
# Otro tipo de gráfico (matplotlib, etc.)
|
| 625 |
-
st.pyplot(analysis['graph1'])
|
| 626 |
-
except Exception as e:
|
| 627 |
-
logger.error(f"Error mostrando gráfico 1: {str(e)}")
|
| 628 |
-
st.error(t.get('error_graph1', 'Error al mostrar el gráfico del Texto 1'))
|
| 629 |
-
else:
|
| 630 |
-
st.info(t.get('no_text1', 'Texto 1 no disponible'))
|
| 631 |
|
| 632 |
-
#
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
# Verificar formato de los datos
|
| 652 |
-
if isinstance(concept_data[0], list) and len(concept_data[0]) == 2:
|
| 653 |
-
# Formato esperado: [["concepto", valor], ...]
|
| 654 |
-
df = pd.DataFrame(concept_data, columns=['Concepto', 'Relevancia'])
|
| 655 |
-
st.dataframe(df, use_container_width=True)
|
| 656 |
-
else:
|
| 657 |
-
st.write(concept_data) # Mostrar como está si no tiene el formato esperado
|
| 658 |
-
else:
|
| 659 |
-
st.info(t.get('no_concepts2', 'No hay conceptos clave disponibles para el Texto 2'))
|
| 660 |
-
|
| 661 |
-
# Mostrar gráfico si existe
|
| 662 |
-
if 'graph2' in analysis and analysis['graph2']:
|
| 663 |
-
st.subheader(t.get('graph2', 'Visualización del Texto 2'))
|
| 664 |
-
try:
|
| 665 |
-
if isinstance(analysis['graph2'], str) and analysis['graph2'].startswith('data:image'):
|
| 666 |
-
# Manejo para string base64
|
| 667 |
-
import base64
|
| 668 |
-
image_bytes = base64.b64decode(analysis['graph2'].split(',')[1])
|
| 669 |
-
st.image(image_bytes, use_column_width=True)
|
| 670 |
-
elif isinstance(analysis['graph2'], bytes):
|
| 671 |
-
# Manejo para bytes directos
|
| 672 |
-
st.image(analysis['graph2'], use_column_width=True)
|
| 673 |
-
else:
|
| 674 |
-
# Otro tipo de gráfico (matplotlib, etc.)
|
| 675 |
-
st.pyplot(analysis['graph2'])
|
| 676 |
-
except Exception as e:
|
| 677 |
-
logger.error(f"Error mostrando gráfico 2: {str(e)}")
|
| 678 |
-
st.error(t.get('error_graph2', 'Error al mostrar el gráfico del Texto 2'))
|
| 679 |
-
else:
|
| 680 |
-
# Caso especial: si text2 está ausente pero text1 está presente
|
| 681 |
-
# mostrar text1 aquí también (para documentos de un solo texto)
|
| 682 |
-
if 'text1' in analysis and analysis['text1']:
|
| 683 |
-
st.info(t.get('using_text1', 'Usando el mismo texto como referencia.'))
|
| 684 |
-
st.text_area(
|
| 685 |
-
"Texto 1 como referencia",
|
| 686 |
-
value=analysis['text1'],
|
| 687 |
-
height=150,
|
| 688 |
-
disabled=True,
|
| 689 |
-
label_visibility="collapsed",
|
| 690 |
-
key=f"text1_ref_{str(analysis['_id'])}"
|
| 691 |
-
)
|
| 692 |
-
else:
|
| 693 |
-
st.info(t.get('no_text2', 'Texto 2 no disponible'))
|
| 694 |
|
| 695 |
-
#
|
| 696 |
-
with
|
| 697 |
-
|
| 698 |
-
if 'combined_graph' in analysis and analysis['combined_graph']:
|
| 699 |
-
st.subheader(t.get('combined_visualization', 'Visualización comparativa'))
|
| 700 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 701 |
if isinstance(analysis['combined_graph'], str):
|
| 702 |
-
|
| 703 |
-
if analysis['combined_graph'].startswith('data:image'):
|
| 704 |
import base64
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
import base64
|
| 710 |
image_bytes = base64.b64decode(analysis['combined_graph'])
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
st.image(image_bytes, use_column_width=True)
|
| 716 |
elif isinstance(analysis['combined_graph'], bytes):
|
| 717 |
-
# Si son bytes directos
|
| 718 |
st.image(analysis['combined_graph'], use_column_width=True)
|
| 719 |
-
|
| 720 |
-
# Otro tipo de gráfico
|
| 721 |
st.pyplot(analysis['combined_graph'])
|
| 722 |
except Exception as e:
|
| 723 |
logger.error(f"Error mostrando gráfico combinado: {str(e)}")
|
| 724 |
-
st.error(t.get('error_combined_graph', 'Error
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
st.subheader(t.get('concept_comparison', 'Comparación de conceptos clave'))
|
| 731 |
-
col1, col2 = st.columns(2)
|
| 732 |
-
|
| 733 |
-
with col1:
|
| 734 |
-
st.markdown(f"**{t.get('text1_concepts', 'Conceptos del Texto 1')}**")
|
| 735 |
-
concept_data1 = analysis['key_concepts1']
|
| 736 |
-
if concept_data1 and len(concept_data1) > 0:
|
| 737 |
-
if isinstance(concept_data1[0], list) and len(concept_data1[0]) == 2:
|
| 738 |
-
df1 = pd.DataFrame(concept_data1, columns=['Concepto', 'Relevancia'])
|
| 739 |
-
st.dataframe(df1, use_container_width=True)
|
| 740 |
-
else:
|
| 741 |
-
st.write(concept_data1)
|
| 742 |
-
|
| 743 |
-
with col2:
|
| 744 |
-
st.markdown(f"**{t.get('text2_concepts', 'Conceptos del Texto 2')}**")
|
| 745 |
-
concept_data2 = analysis['key_concepts2']
|
| 746 |
-
if concept_data2 and len(concept_data2) > 0:
|
| 747 |
-
if isinstance(concept_data2[0], list) and len(concept_data2[0]) == 2:
|
| 748 |
-
df2 = pd.DataFrame(concept_data2, columns=['Concepto', 'Relevancia'])
|
| 749 |
-
st.dataframe(df2, use_container_width=True)
|
| 750 |
-
else:
|
| 751 |
-
st.write(concept_data2)
|
| 752 |
-
|
| 753 |
-
# Mostrar conceptos en común (intersección)
|
| 754 |
-
if (isinstance(analysis['key_concepts1'], list) and
|
| 755 |
-
isinstance(analysis['key_concepts2'], list)):
|
| 756 |
-
|
| 757 |
-
concepts1 = [item[0] for item in analysis['key_concepts1'] if isinstance(item, list) and len(item) == 2]
|
| 758 |
-
concepts2 = [item[0] for item in analysis['key_concepts2'] if isinstance(item, list) and len(item) == 2]
|
| 759 |
-
|
| 760 |
-
common_concepts = set(concepts1).intersection(set(concepts2))
|
| 761 |
-
|
| 762 |
-
if common_concepts:
|
| 763 |
-
st.subheader(t.get('common_concepts', 'Conceptos en común'))
|
| 764 |
-
st.write(", ".join(common_concepts))
|
| 765 |
-
else:
|
| 766 |
-
st.info(t.get('no_common_concepts', 'No se encontraron conceptos en común entre los textos'))
|
| 767 |
-
else:
|
| 768 |
-
st.info(t.get('no_comparison_data', 'No hay datos suficientes para la comparación'))
|
| 769 |
-
|
| 770 |
-
# Nota sobre la comparación
|
| 771 |
-
st.info(t.get('comparison_note',
|
| 772 |
-
'La funcionalidad de comparación avanzada estará disponible en una próxima actualización.'))
|
| 773 |
|
| 774 |
except Exception as e:
|
| 775 |
logger.error(f"Error procesando análisis individual: {str(e)}")
|
|
@@ -777,9 +650,9 @@ def display_discourse_activities(username: str, t: dict):
|
|
| 777 |
|
| 778 |
except Exception as e:
|
| 779 |
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
| 780 |
-
# Usamos el término "análisis comparado de textos" en la UI
|
| 781 |
st.error(t.get('error_discourse', 'Error al mostrar análisis comparado de textos'))
|
| 782 |
|
|
|
|
| 783 |
#################################################################################
|
| 784 |
def display_chat_activities(username: str, t: dict):
|
| 785 |
"""
|
|
|
|
| 535 |
|
| 536 |
|
| 537 |
###################################################################################################
|
| 538 |
+
|
| 539 |
def display_discourse_activities(username: str, t: dict):
|
| 540 |
"""
|
| 541 |
+
Muestra actividades de análisis del discurso centradas en las visualizaciones comparativas
|
| 542 |
"""
|
| 543 |
try:
|
| 544 |
logger.info(f"Recuperando análisis del discurso para {username}")
|
|
|
|
|
|
|
|
|
|
| 545 |
analyses = get_student_discourse_analysis(username)
|
| 546 |
|
| 547 |
if not analyses:
|
| 548 |
logger.info("No se encontraron análisis del discurso")
|
|
|
|
| 549 |
st.info(t.get('no_discourse_analyses', 'No hay análisis comparados de textos registrados'))
|
| 550 |
return
|
| 551 |
|
| 552 |
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
| 553 |
for analysis in analyses:
|
| 554 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
# Formatear fecha
|
| 556 |
+
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
| 557 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
|
| 559 |
+
# Título del expander
|
| 560 |
expander_title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
|
| 561 |
|
| 562 |
with st.expander(expander_title, expanded=False):
|
| 563 |
+
# Mostrar conceptos clave en dos columnas
|
| 564 |
+
if 'key_concepts1' in analysis and 'key_concepts2' in analysis:
|
| 565 |
+
col1, col2 = st.columns(2)
|
| 566 |
+
|
| 567 |
+
with col1:
|
| 568 |
+
st.subheader(t.get('concepts_text_1', 'Conceptos Texto 1'))
|
| 569 |
+
if analysis['key_concepts1']:
|
| 570 |
+
df1 = pd.DataFrame(analysis['key_concepts1'], columns=['Concepto', 'Relevancia'])
|
| 571 |
+
st.dataframe(df1, use_container_width=True)
|
| 572 |
+
|
| 573 |
+
with col2:
|
| 574 |
+
st.subheader(t.get('concepts_text_2', 'Conceptos Texto 2'))
|
| 575 |
+
if analysis['key_concepts2']:
|
| 576 |
+
df2 = pd.DataFrame(analysis['key_concepts2'], columns=['Concepto', 'Relevancia'])
|
| 577 |
+
st.dataframe(df2, use_container_width=True)
|
| 578 |
|
| 579 |
+
# Mostrar visualizaciones semánticas
|
| 580 |
+
st.subheader(t.get('semantic_visualization', 'Visualización Semántica'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
|
| 582 |
+
# Mostrar gráficos en fila
|
| 583 |
+
graph_cols = st.columns(3)
|
| 584 |
+
|
| 585 |
+
# Gráfico 1 (si existe)
|
| 586 |
+
with graph_cols[0]:
|
| 587 |
+
if analysis.get('graph1'):
|
| 588 |
+
try:
|
| 589 |
+
st.caption(t.get('graph1_caption', 'Grafo Texto 1'))
|
| 590 |
+
if isinstance(analysis['graph1'], str) and analysis['graph1'].startswith('data:image'):
|
| 591 |
+
import base64
|
| 592 |
+
image_bytes = base64.b64decode(analysis['graph1'].split(',')[1])
|
| 593 |
+
st.image(image_bytes, use_column_width=True)
|
| 594 |
+
elif isinstance(analysis['graph1'], bytes):
|
| 595 |
+
st.image(analysis['graph1'], use_column_width=True)
|
| 596 |
+
elif analysis['graph1'] is not None:
|
| 597 |
+
st.pyplot(analysis['graph1'])
|
| 598 |
+
except Exception as e:
|
| 599 |
+
logger.error(f"Error mostrando gráfico 1: {str(e)}")
|
| 600 |
+
st.error(t.get('error_graph1', 'Error mostrando gráfico 1'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 601 |
|
| 602 |
+
# Gráfico 2 (si existe)
|
| 603 |
+
with graph_cols[1]:
|
| 604 |
+
if analysis.get('graph2'):
|
|
|
|
|
|
|
| 605 |
try:
|
| 606 |
+
st.caption(t.get('graph2_caption', 'Grafo Texto 2'))
|
| 607 |
+
if isinstance(analysis['graph2'], str) and analysis['graph2'].startswith('data:image'):
|
| 608 |
+
import base64
|
| 609 |
+
image_bytes = base64.b64decode(analysis['graph2'].split(',')[1])
|
| 610 |
+
st.image(image_bytes, use_column_width=True)
|
| 611 |
+
elif isinstance(analysis['graph2'], bytes):
|
| 612 |
+
st.image(analysis['graph2'], use_column_width=True)
|
| 613 |
+
elif analysis['graph2'] is not None:
|
| 614 |
+
st.pyplot(analysis['graph2'])
|
| 615 |
+
except Exception as e:
|
| 616 |
+
logger.error(f"Error mostrando gráfico 2: {str(e)}")
|
| 617 |
+
st.error(t.get('error_graph2', 'Error mostrando gráfico 2'))
|
| 618 |
+
|
| 619 |
+
# Gráfico combinado (si existe) - en la última columna
|
| 620 |
+
with graph_cols[2]:
|
| 621 |
+
if analysis.get('combined_graph'):
|
| 622 |
+
try:
|
| 623 |
+
st.caption(t.get('combined_graph_caption', 'Grafo Comparativo'))
|
| 624 |
if isinstance(analysis['combined_graph'], str):
|
| 625 |
+
try:
|
|
|
|
| 626 |
import base64
|
| 627 |
+
# Intentar diferentes formatos de base64
|
| 628 |
+
if analysis['combined_graph'].startswith('data:image'):
|
| 629 |
+
image_bytes = base64.b64decode(analysis['combined_graph'].split(',')[1])
|
| 630 |
+
else:
|
|
|
|
| 631 |
image_bytes = base64.b64decode(analysis['combined_graph'])
|
| 632 |
+
st.image(image_bytes, use_column_width=True)
|
| 633 |
+
except:
|
| 634 |
+
logger.error("Error decodificando imagen combinada")
|
|
|
|
|
|
|
| 635 |
elif isinstance(analysis['combined_graph'], bytes):
|
|
|
|
| 636 |
st.image(analysis['combined_graph'], use_column_width=True)
|
| 637 |
+
elif analysis['combined_graph'] is not None:
|
|
|
|
| 638 |
st.pyplot(analysis['combined_graph'])
|
| 639 |
except Exception as e:
|
| 640 |
logger.error(f"Error mostrando gráfico combinado: {str(e)}")
|
| 641 |
+
st.error(t.get('error_combined_graph', 'Error mostrando gráfico combinado'))
|
| 642 |
+
|
| 643 |
+
# Si no hay ningún gráfico disponible
|
| 644 |
+
if all(analysis.get(k) is None for k in ['graph1', 'graph2', 'combined_graph']):
|
| 645 |
+
st.info(t.get('no_visualizations', 'No hay visualizaciones disponibles para este análisis'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
|
| 647 |
except Exception as e:
|
| 648 |
logger.error(f"Error procesando análisis individual: {str(e)}")
|
|
|
|
| 650 |
|
| 651 |
except Exception as e:
|
| 652 |
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
|
|
|
| 653 |
st.error(t.get('error_discourse', 'Error al mostrar análisis comparado de textos'))
|
| 654 |
|
| 655 |
+
|
| 656 |
#################################################################################
|
| 657 |
def display_chat_activities(username: str, t: dict):
|
| 658 |
"""
|