Spaces:
Running
Running
#semantic_analysis.py | |
import streamlit as st | |
import spacy | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
from collections import Counter, defaultdict | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
# Define colors for grammatical categories | |
POS_COLORS = { | |
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', | |
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', | |
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', | |
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', | |
} | |
POS_TRANSLATIONS = { | |
'es': { | |
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', | |
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', | |
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', | |
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', | |
'VERB': 'Verbo', 'X': 'Otro', | |
}, | |
'en': { | |
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', | |
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', | |
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', | |
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', | |
'VERB': 'Verb', 'X': 'Other', | |
}, | |
'fr': { | |
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', | |
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', | |
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', | |
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', | |
'VERB': 'Verbe', 'X': 'Autre', | |
} | |
} | |
ENTITY_LABELS = { | |
'es': { | |
"Personas": "lightblue", | |
"Lugares": "lightcoral", | |
"Inventos": "lightgreen", | |
"Fechas": "lightyellow", | |
"Conceptos": "lightpink" | |
}, | |
'en': { | |
"People": "lightblue", | |
"Places": "lightcoral", | |
"Inventions": "lightgreen", | |
"Dates": "lightyellow", | |
"Concepts": "lightpink" | |
}, | |
'fr': { | |
"Personnes": "lightblue", | |
"Lieux": "lightcoral", | |
"Inventions": "lightgreen", | |
"Dates": "lightyellow", | |
"Concepts": "lightpink" | |
} | |
} | |
def identify_and_contextualize_entities(doc, lang): | |
entities = [] | |
for ent in doc.ents: | |
# Obtener el contexto (3 palabras antes y después de la entidad) | |
start = max(0, ent.start - 3) | |
end = min(len(doc), ent.end + 3) | |
context = doc[start:end].text | |
# Mapear las etiquetas de spaCy a nuestras categorías | |
if ent.label_ in ['PERSON', 'ORG']: | |
category = "Personas" if lang == 'es' else "People" if lang == 'en' else "Personnes" | |
elif ent.label_ in ['LOC', 'GPE']: | |
category = "Lugares" if lang == 'es' else "Places" if lang == 'en' else "Lieux" | |
elif ent.label_ in ['PRODUCT']: | |
category = "Inventos" if lang == 'es' else "Inventions" if lang == 'en' else "Inventions" | |
elif ent.label_ in ['DATE', 'TIME']: | |
category = "Fechas" if lang == 'es' else "Dates" if lang == 'en' else "Dates" | |
else: | |
category = "Conceptos" if lang == 'es' else "Concepts" if lang == 'en' else "Concepts" | |
entities.append({ | |
'text': ent.text, | |
'label': category, | |
'start': ent.start, | |
'end': ent.end, | |
'context': context | |
}) | |
# Identificar conceptos clave (usando sustantivos y verbos más frecuentes) | |
word_freq = Counter([token.lemma_.lower() for token in doc if token.pos_ in ['NOUN', 'VERB'] and not token.is_stop]) | |
key_concepts = word_freq.most_common(10) # Top 10 conceptos clave | |
return entities, key_concepts | |
def create_concept_graph(text, concepts): | |
vectorizer = TfidfVectorizer() | |
tfidf_matrix = vectorizer.fit_transform([text]) | |
concept_vectors = vectorizer.transform(concepts) | |
similarity_matrix = cosine_similarity(concept_vectors, concept_vectors) | |
G = nx.Graph() | |
for i, concept in enumerate(concepts): | |
G.add_node(concept) | |
for j in range(i+1, len(concepts)): | |
if similarity_matrix[i][j] > 0.1: | |
G.add_edge(concept, concepts[j], weight=similarity_matrix[i][j]) | |
return G | |
def visualize_concept_graph(G, lang): | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
pos = nx.spring_layout(G) | |
nx.draw_networkx_nodes(G, pos, node_size=3000, node_color='lightblue', ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) | |
nx.draw_networkx_edges(G, pos, width=1, ax=ax) | |
edge_labels = nx.get_edge_attributes(G, 'weight') | |
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=8, ax=ax) | |
title = { | |
'es': "Relaciones Conceptuales", | |
'en': "Conceptual Relations", | |
'fr': "Relations Conceptuelles" | |
} | |
ax.set_title(title[lang], fontsize=16) | |
ax.axis('off') | |
return fig | |
def perform_semantic_analysis(text, nlp, lang): | |
doc = nlp(text) | |
# Identificar entidades y conceptos clave | |
entities, key_concepts = identify_and_contextualize_entities(doc, lang) | |
# Crear y visualizar grafo de conceptos | |
concepts = [concept for concept, _ in key_concepts] | |
concept_graph = create_concept_graph(text, concepts) | |
relations_graph = visualize_concept_graph(concept_graph, lang) | |
return { | |
'entities': entities, | |
'key_concepts': key_concepts, | |
'relations_graph': relations_graph | |
} | |
__all__ = ['perform_semantic_analysis', 'ENTITY_LABELS', 'POS_TRANSLATIONS'] |