Spaces:
Running
Running
# modules/text_analysis/semantic_analysis.py | |
# [Mantener todas las importaciones y constantes existentes...] | |
import streamlit as st | |
import spacy | |
import networkx as nx | |
import matplotlib.pyplot as plt | |
import io | |
import base64 | |
from collections import Counter, defaultdict | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import logging | |
logger = logging.getLogger(__name__) | |
# Define colors for grammatical categories | |
POS_COLORS = { | |
'ADJ': '#FFA07A', 'ADP': '#98FB98', 'ADV': '#87CEFA', 'AUX': '#DDA0DD', | |
'CCONJ': '#F0E68C', 'DET': '#FFB6C1', 'INTJ': '#FF6347', 'NOUN': '#90EE90', | |
'NUM': '#FAFAD2', 'PART': '#D3D3D3', 'PRON': '#FFA500', 'PROPN': '#20B2AA', | |
'SCONJ': '#DEB887', 'SYM': '#7B68EE', 'VERB': '#FF69B4', 'X': '#A9A9A9', | |
} | |
POS_TRANSLATIONS = { | |
'es': { | |
'ADJ': 'Adjetivo', 'ADP': 'Preposición', 'ADV': 'Adverbio', 'AUX': 'Auxiliar', | |
'CCONJ': 'Conjunción Coordinante', 'DET': 'Determinante', 'INTJ': 'Interjección', | |
'NOUN': 'Sustantivo', 'NUM': 'Número', 'PART': 'Partícula', 'PRON': 'Pronombre', | |
'PROPN': 'Nombre Propio', 'SCONJ': 'Conjunción Subordinante', 'SYM': 'Símbolo', | |
'VERB': 'Verbo', 'X': 'Otro', | |
}, | |
'en': { | |
'ADJ': 'Adjective', 'ADP': 'Preposition', 'ADV': 'Adverb', 'AUX': 'Auxiliary', | |
'CCONJ': 'Coordinating Conjunction', 'DET': 'Determiner', 'INTJ': 'Interjection', | |
'NOUN': 'Noun', 'NUM': 'Number', 'PART': 'Particle', 'PRON': 'Pronoun', | |
'PROPN': 'Proper Noun', 'SCONJ': 'Subordinating Conjunction', 'SYM': 'Symbol', | |
'VERB': 'Verb', 'X': 'Other', | |
}, | |
'fr': { | |
'ADJ': 'Adjectif', 'ADP': 'Préposition', 'ADV': 'Adverbe', 'AUX': 'Auxiliaire', | |
'CCONJ': 'Conjonction de Coordination', 'DET': 'Déterminant', 'INTJ': 'Interjection', | |
'NOUN': 'Nom', 'NUM': 'Nombre', 'PART': 'Particule', 'PRON': 'Pronom', | |
'PROPN': 'Nom Propre', 'SCONJ': 'Conjonction de Subordination', 'SYM': 'Symbole', | |
'VERB': 'Verbe', 'X': 'Autre', | |
} | |
} | |
ENTITY_LABELS = { | |
'es': { | |
"Personas": "lightblue", | |
"Lugares": "lightcoral", | |
"Inventos": "lightgreen", | |
"Fechas": "lightyellow", | |
"Conceptos": "lightpink" | |
}, | |
'en': { | |
"People": "lightblue", | |
"Places": "lightcoral", | |
"Inventions": "lightgreen", | |
"Dates": "lightyellow", | |
"Concepts": "lightpink" | |
}, | |
'fr': { | |
"Personnes": "lightblue", | |
"Lieux": "lightcoral", | |
"Inventions": "lightgreen", | |
"Dates": "lightyellow", | |
"Concepts": "lightpink" | |
} | |
} | |
CUSTOM_STOPWORDS = { | |
'es': { | |
# Artículos | |
'el', 'la', 'los', 'las', 'un', 'una', 'unos', 'unas', | |
# Preposiciones comunes | |
'a', 'ante', 'bajo', 'con', 'contra', 'de', 'desde', 'en', | |
'entre', 'hacia', 'hasta', 'para', 'por', 'según', 'sin', | |
'sobre', 'tras', 'durante', 'mediante', | |
# Conjunciones | |
'y', 'e', 'ni', 'o', 'u', 'pero', 'sino', 'porque', | |
# Pronombres | |
'yo', 'tú', 'él', 'ella', 'nosotros', 'vosotros', 'ellos', | |
'ellas', 'este', 'esta', 'ese', 'esa', 'aquel', 'aquella', | |
# Verbos auxiliares comunes | |
'ser', 'estar', 'haber', 'tener', | |
# Palabras comunes en textos académicos | |
'además', 'también', 'asimismo', 'sin embargo', 'no obstante', | |
'por lo tanto', 'entonces', 'así', 'luego', 'pues', | |
# Números escritos | |
'uno', 'dos', 'tres', 'primer', 'primera', 'segundo', 'segunda', | |
# Otras palabras comunes | |
'cada', 'todo', 'toda', 'todos', 'todas', 'otro', 'otra', | |
'donde', 'cuando', 'como', 'que', 'cual', 'quien', | |
'cuyo', 'cuya', 'hay', 'solo', 'ver', 'si', 'no', | |
# Símbolos y caracteres especiales | |
'#', '@', '/', '*', '+', '-', '=', '$', '%' | |
}, | |
'en': { | |
# Articles | |
'the', 'a', 'an', | |
# Common prepositions | |
'in', 'on', 'at', 'by', 'for', 'with', 'about', 'against', | |
'between', 'into', 'through', 'during', 'before', 'after', | |
'above', 'below', 'to', 'from', 'up', 'down', 'of', | |
# Conjunctions | |
'and', 'or', 'but', 'nor', 'so', 'for', 'yet', | |
# Pronouns | |
'i', 'you', 'he', 'she', 'it', 'we', 'they', 'this', | |
'that', 'these', 'those', 'my', 'your', 'his', 'her', | |
# Auxiliary verbs | |
'be', 'am', 'is', 'are', 'was', 'were', 'been', 'have', | |
'has', 'had', 'do', 'does', 'did', | |
# Common academic words | |
'therefore', 'however', 'thus', 'hence', 'moreover', | |
'furthermore', 'nevertheless', | |
# Numbers written | |
'one', 'two', 'three', 'first', 'second', 'third', | |
# Other common words | |
'where', 'when', 'how', 'what', 'which', 'who', | |
'whom', 'whose', 'there', 'here', 'just', 'only', | |
# Symbols and special characters | |
'#', '@', '/', '*', '+', '-', '=', '$', '%' | |
}, | |
'fr': { | |
# Articles | |
'le', 'la', 'les', 'un', 'une', 'des', | |
# Prepositions | |
'à', 'de', 'dans', 'sur', 'en', 'par', 'pour', 'avec', | |
'sans', 'sous', 'entre', 'derrière', 'chez', 'avant', | |
# Conjunctions | |
'et', 'ou', 'mais', 'donc', 'car', 'ni', 'or', | |
# Pronouns | |
'je', 'tu', 'il', 'elle', 'nous', 'vous', 'ils', | |
'elles', 'ce', 'cette', 'ces', 'celui', 'celle', | |
# Auxiliary verbs | |
'être', 'avoir', 'faire', | |
# Academic words | |
'donc', 'cependant', 'néanmoins', 'ainsi', 'toutefois', | |
'pourtant', 'alors', | |
# Numbers | |
'un', 'deux', 'trois', 'premier', 'première', 'second', | |
# Other common words | |
'où', 'quand', 'comment', 'que', 'qui', 'quoi', | |
'quel', 'quelle', 'plus', 'moins', | |
# Symbols | |
'#', '@', '/', '*', '+', '-', '=', '$', '%' | |
} | |
} | |
############################################################################################################## | |
def get_stopwords(lang_code): | |
""" | |
Obtiene el conjunto de stopwords para un idioma específico. | |
Combina las stopwords de spaCy con las personalizadas. | |
""" | |
try: | |
nlp = spacy.load(f'{lang_code}_core_news_sm') | |
spacy_stopwords = nlp.Defaults.stop_words | |
custom_stopwords = CUSTOM_STOPWORDS.get(lang_code, set()) | |
return spacy_stopwords.union(custom_stopwords) | |
except: | |
return CUSTOM_STOPWORDS.get(lang_code, set()) | |
def perform_semantic_analysis(text, nlp, lang_code): | |
""" | |
Realiza el análisis semántico completo del texto. | |
Args: | |
text: Texto a analizar | |
nlp: Modelo de spaCy | |
lang_code: Código del idioma | |
Returns: | |
dict: Resultados del análisis | |
""" | |
logger.info(f"Starting semantic analysis for language: {lang_code}") | |
try: | |
doc = nlp(text) | |
key_concepts = identify_key_concepts(doc) | |
concept_graph = create_concept_graph(doc, key_concepts) | |
concept_graph_fig = visualize_concept_graph(concept_graph, lang_code) | |
entities = extract_entities(doc, lang_code) | |
entity_graph = create_entity_graph(entities) | |
entity_graph_fig = visualize_entity_graph(entity_graph, lang_code) | |
# Convertir figuras a bytes | |
concept_graph_bytes = fig_to_bytes(concept_graph_fig) | |
entity_graph_bytes = fig_to_bytes(entity_graph_fig) | |
logger.info("Semantic analysis completed successfully") | |
return { | |
'key_concepts': key_concepts, | |
'concept_graph': concept_graph_bytes, | |
'entities': entities, | |
'entity_graph': entity_graph_bytes | |
} | |
except Exception as e: | |
logger.error(f"Error in perform_semantic_analysis: {str(e)}") | |
raise | |
def fig_to_bytes(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png') | |
buf.seek(0) | |
return buf.getvalue() | |
def fig_to_html(fig): | |
buf = io.BytesIO() | |
fig.savefig(buf, format='png') | |
buf.seek(0) | |
img_str = base64.b64encode(buf.getvalue()).decode() | |
return f'<img src="data:image/png;base64,{img_str}" />' | |
def identify_key_concepts(doc, min_freq=2, min_length=3): | |
""" | |
Identifica conceptos clave en el texto. | |
Args: | |
doc: Documento procesado por spaCy | |
min_freq: Frecuencia mínima para considerar un concepto | |
min_length: Longitud mínima de palabra para considerar | |
Returns: | |
list: Lista de tuplas (concepto, frecuencia) | |
""" | |
try: | |
# Obtener stopwords para el idioma | |
stopwords = get_stopwords(doc.lang_) | |
# Contar frecuencias de palabras | |
word_freq = Counter() | |
for token in doc: | |
if (token.lemma_.lower() not in stopwords and | |
len(token.lemma_) >= min_length and | |
token.is_alpha and | |
not token.is_punct and | |
not token.like_num): | |
word_freq[token.lemma_.lower()] += 1 | |
# Filtrar por frecuencia mínima | |
concepts = [(word, freq) for word, freq in word_freq.items() | |
if freq >= min_freq] | |
# Ordenar por frecuencia | |
concepts.sort(key=lambda x: x[1], reverse=True) | |
return concepts[:10] # Retornar los 10 conceptos más frecuentes | |
except Exception as e: | |
logger.error(f"Error en identify_key_concepts: {str(e)}") | |
return [] # Retornar lista vacía en caso de error | |
def create_concept_graph(doc, key_concepts): | |
""" | |
Crea un grafo de relaciones entre conceptos. | |
Args: | |
doc: Documento procesado por spaCy | |
key_concepts: Lista de tuplas (concepto, frecuencia) | |
Returns: | |
nx.Graph: Grafo de conceptos | |
""" | |
try: | |
G = nx.Graph() | |
# Crear un conjunto de conceptos clave para búsqueda rápida | |
concept_words = {concept[0].lower() for concept in key_concepts} | |
# Añadir nodos al grafo | |
for concept, freq in key_concepts: | |
G.add_node(concept.lower(), weight=freq) | |
# Analizar cada oración | |
for sent in doc.sents: | |
# Obtener conceptos en la oración actual | |
current_concepts = [] | |
for token in sent: | |
if token.lemma_.lower() in concept_words: | |
current_concepts.append(token.lemma_.lower()) | |
# Crear conexiones entre conceptos en la misma oración | |
for i, concept1 in enumerate(current_concepts): | |
for concept2 in current_concepts[i+1:]: | |
if concept1 != concept2: | |
# Si ya existe la arista, incrementar el peso | |
if G.has_edge(concept1, concept2): | |
G[concept1][concept2]['weight'] += 1 | |
# Si no existe, crear nueva arista con peso 1 | |
else: | |
G.add_edge(concept1, concept2, weight=1) | |
return G | |
except Exception as e: | |
logger.error(f"Error en create_concept_graph: {str(e)}") | |
# Retornar un grafo vacío en caso de error | |
return nx.Graph() | |
def visualize_concept_graph(G, lang_code): | |
""" | |
Visualiza el grafo de conceptos. | |
Args: | |
G: Grafo de networkx | |
lang_code: Código del idioma | |
Returns: | |
matplotlib.figure.Figure: Figura con el grafo visualizado | |
""" | |
try: | |
plt.figure(figsize=(12, 8)) | |
# Calcular el layout del grafo | |
pos = nx.spring_layout(G) | |
# Obtener pesos de nodos y aristas | |
node_weights = [G.nodes[node].get('weight', 1) * 500 for node in G.nodes()] | |
edge_weights = [G[u][v].get('weight', 1) for u, v in G.edges()] | |
# Dibujar el grafo | |
nx.draw_networkx_nodes(G, pos, | |
node_size=node_weights, | |
node_color='lightblue', | |
alpha=0.6) | |
nx.draw_networkx_edges(G, pos, | |
width=edge_weights, | |
alpha=0.5, | |
edge_color='gray') | |
nx.draw_networkx_labels(G, pos, | |
font_size=10, | |
font_weight='bold') | |
plt.title("Red de conceptos relacionados") | |
plt.axis('off') | |
return plt.gcf() | |
except Exception as e: | |
logger.error(f"Error en visualize_concept_graph: {str(e)}") | |
# Retornar una figura vacía en caso de error | |
return plt.figure() | |
def create_entity_graph(entities): | |
G = nx.Graph() | |
for entity_type, entity_list in entities.items(): | |
for entity in entity_list: | |
G.add_node(entity, type=entity_type) | |
for i, entity1 in enumerate(entity_list): | |
for entity2 in entity_list[i+1:]: | |
G.add_edge(entity1, entity2) | |
return G | |
def visualize_entity_graph(G, lang_code): | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
pos = nx.spring_layout(G) | |
for entity_type, color in ENTITY_LABELS[lang_code].items(): | |
node_list = [node for node, data in G.nodes(data=True) if data['type'] == entity_type] | |
nx.draw_networkx_nodes(G, pos, nodelist=node_list, node_color=color, node_size=500, alpha=0.8, ax=ax) | |
nx.draw_networkx_edges(G, pos, width=1, alpha=0.5, ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=8, font_weight="bold", ax=ax) | |
ax.set_title(f"Relaciones entre Entidades ({lang_code})", fontsize=16) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
################################################################################# | |
def create_topic_graph(topics, doc): | |
G = nx.Graph() | |
for topic in topics: | |
G.add_node(topic, weight=doc.text.count(topic)) | |
for i, topic1 in enumerate(topics): | |
for topic2 in topics[i+1:]: | |
weight = sum(1 for sent in doc.sents if topic1 in sent.text and topic2 in sent.text) | |
if weight > 0: | |
G.add_edge(topic1, topic2, weight=weight) | |
return G | |
def visualize_topic_graph(G, lang_code): | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
pos = nx.spring_layout(G) | |
node_sizes = [G.nodes[node]['weight'] * 100 for node in G.nodes()] | |
nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color='lightgreen', alpha=0.8, ax=ax) | |
nx.draw_networkx_labels(G, pos, font_size=10, font_weight="bold", ax=ax) | |
edge_weights = [G[u][v]['weight'] for u, v in G.edges()] | |
nx.draw_networkx_edges(G, pos, width=edge_weights, alpha=0.5, ax=ax) | |
ax.set_title(f"Relaciones entre Temas ({lang_code})", fontsize=16) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
########################################################################################### | |
def generate_summary(doc, lang_code): | |
sentences = list(doc.sents) | |
summary = sentences[:3] # Toma las primeras 3 oraciones como resumen | |
return " ".join([sent.text for sent in summary]) | |
def extract_entities(doc, lang_code): | |
entities = defaultdict(list) | |
for ent in doc.ents: | |
if ent.label_ in ENTITY_LABELS[lang_code]: | |
entities[ent.label_].append(ent.text) | |
return dict(entities) | |
def analyze_sentiment(doc, lang_code): | |
positive_words = sum(1 for token in doc if token.sentiment > 0) | |
negative_words = sum(1 for token in doc if token.sentiment < 0) | |
total_words = len(doc) | |
if positive_words > negative_words: | |
return "Positivo" | |
elif negative_words > positive_words: | |
return "Negativo" | |
else: | |
return "Neutral" | |
def extract_topics(doc, lang_code): | |
vectorizer = TfidfVectorizer(stop_words='english', max_features=5) | |
tfidf_matrix = vectorizer.fit_transform([doc.text]) | |
feature_names = vectorizer.get_feature_names_out() | |
return list(feature_names) | |
# Asegúrate de que todas las funciones necesarias estén exportadas | |
__all__ = [ | |
'perform_semantic_analysis', | |
'identify_key_concepts', | |
'create_concept_graph', | |
'visualize_concept_graph', | |
'create_entity_graph', | |
'visualize_entity_graph', | |
'generate_summary', | |
'extract_entities', | |
'analyze_sentiment', | |
'create_topic_graph', | |
'visualize_topic_graph', | |
'extract_topics', | |
'ENTITY_LABELS', | |
'POS_COLORS', | |
'POS_TRANSLATIONS' | |
] |