# Importaciones generales
import streamlit as st
import re
import io
from io import BytesIO
import base64
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import time
from datetime import datetime
from streamlit_player import st_player # Necesitarás instalar esta librería: pip install streamlit-player
from spacy import displacy
import logging
import random
######################################################
# Configuración del logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
######################################################
# Importaciones locales
from ..email.email import send_email_notification
######################################################
# Importaciones locales de autenticación y base de datos
from ..auth.auth import (
authenticate_user,
register_user
)
######################################################
from ..database.database import (
get_student_data,
store_application_request,
store_morphosyntax_result,
store_semantic_result,
store_discourse_analysis_result,
store_chat_history,
create_admin_user,
create_student_user,
store_user_feedback
)
######################################################
# Importaciones locales de uiadmin
from ..admin.admin_ui import admin_page
######################################################
# Importaciones locales funciones de análisis
from ..text_analysis.morpho_analysis import (
generate_arc_diagram,
get_repeated_words_colors,
highlight_repeated_words,
POS_COLORS,
POS_TRANSLATIONS,
perform_advanced_morphosyntactic_analysis
)
######################################################
from ..text_analysis.semantic_analysis import (
#visualize_semantic_relations,
perform_semantic_analysis,
create_concept_graph,
visualize_concept_graph
)
######################################################
from ..text_analysis.discourse_analysis import (
perform_discourse_analysis,
display_discourse_analysis_results
)
######################################################
from ..chatbot.chatbot import (
initialize_chatbot,
get_chatbot_response
)
##################################################################################################
def initialize_session_state():
if 'initialized' not in st.session_state:
st.session_state.clear()
st.session_state.initialized = True
st.session_state.logged_in = False
st.session_state.page = 'login'
st.session_state.username = None
st.session_state.role = None
##################################################################################################
def main():
initialize_session_state()
print(f"Página actual: {st.session_state.page}")
print(f"Rol del usuario: {st.session_state.role}")
if st.session_state.page == 'login':
login_register_page()
elif st.session_state.page == 'admin':
print("Intentando mostrar página de admin")
admin_page()
elif st.session_state.page == 'user':
user_page()
else:
print(f"Página no reconocida: {st.session_state.page}")
print(f"Estado final de la sesión: {st.session_state}")
##################################################################################################
def login_register_page():
st.title("AIdeaText")
left_column, right_column = st.columns([1, 3])
with left_column:
tab1, tab2 = st.tabs(["Iniciar Sesión", "Registrarse"])
with tab1:
login_form()
with tab2:
register_form()
with right_column:
display_videos_and_info()
##################################################################################################
def login_form():
username = st.text_input("Correo electrónico", key="login_username")
password = st.text_input("Contraseña", type="password", key="login_password")
if st.button("Iniciar Sesión", key="login_button"):
success, role = authenticate_user(username, password)
if success:
st.session_state.logged_in = True
st.session_state.username = username
st.session_state.role = role
st.session_state.page = 'admin' if role == 'Administrador' else 'user'
print(f"Inicio de sesión exitoso. Usuario: {username}, Rol: {role}")
print(f"Estado de sesión después de login: {st.session_state}")
st.rerun()
else:
st.error("Credenciales incorrectas")
##################################################################################################
def admin_page():
st.title("Panel de Administración")
st.write(f"Bienvenida, {st.session_state.username}")
st.header("Crear Nuevo Usuario Estudiante")
new_username = st.text_input("Correo electrónico del nuevo usuario", key="admin_new_username")
new_password = st.text_input("Contraseña", type="password", key="admin_new_password")
if st.button("Crear Usuario", key="admin_create_user"):
if create_student_user(new_username, new_password):
st.success(f"Usuario estudiante {new_username} creado exitosamente")
else:
st.error("Error al crear el usuario estudiante")
# Aquí puedes añadir más funcionalidades para el panel de administración
##################################################################################################
def user_page():
# Asumimos que el idioma seleccionado está almacenado en st.session_state.lang_code
# Si no está definido, usamos 'es' como valor predeterminado
lang_code = st.session_state.get('lang_code', 'es')
translations = {
'es': {
'welcome': "Bienvenido a AIdeaText",
'hello': "Hola",
'tabs': ["Análisis Morfosintáctico", "Análisis Semántico", "Análisis del Discurso", "Chat", "Mi Progreso", "Formulario de Retroalimentación"]
},
'en': {
'welcome': "Welcome to AIdeaText",
'hello': "Hello",
'tabs': ["Morphosyntactic Analysis", "Semantic Analysis", "Discourse Analysis", "Chat", "My Progress", "Feedback Form"]
},
'fr': {
'welcome': "Bienvenue à AIdeaText",
'hello': "Bonjour",
'tabs': ["Analyse Morphosyntaxique", "Analyse Sémantique", "Analyse du Discours", "Chat", "Mon Progrès", "Formulaire de Rétroaction"]
}
}
t = translations[lang_code]
st.title(t['welcome'])
st.write(f"{t['hello']}, {st.session_state.username}")
tabs = st.tabs(t['tabs'])
with tabs[0]:
display_morphosyntax_analysis_interface(nlp_models, lang_code)
with tabs[1]:
display_semantic_analysis_interface(nlp_models, lang_code)
with tabs[2]:
display_discourse_analysis_interface(nlp_models, lang_code)
with tabs[3]:
display_chatbot_interface(lang_code)
with tabs[4]:
display_student_progress(st.session_state.username, lang_code)
with tabs[5]:
display_feedback_form(lang_code)
##################################################################################################
def display_videos_and_info():
st.header("Conferencias")
videos = {
"Reel AIdeaText": "https://youtu.be/UA-md1VxaRc",
"Presentación en SENDA, UNAM. Ciudad de México, México" : "https://www.youtube.com/watch?v=XFLvjST2cE0",
"Presentación en PyCon 2024. Colombia, Medellín": "https://www.youtube.com/watch?v=Jn545-IKx5Q",
"Presentación en la Fundación Ser Maaestro. Lima, Perú": "https://www.youtube.com/watch?v=imc4TI1q164",
"Presentación en el programa de incubación Explora del IFE, TEC de Monterrey, Nuevo León, México": "https://www.youtube.com/watch?v=Fqi4Di_Rj_s",
"Entrevista con el Dr. Guillermo Ruíz. Lima, Perú": "https://www.youtube.com/watch?v=_ch8cRja3oc",
"Demo de la versión de escritorio.": "https://www.youtube.com/watch?v=nP6eXbog-ZY"
}
selected_title = st.selectbox("Selecciona una conferencia:", list(videos.keys()))
if selected_title in videos:
try:
st_player(videos[selected_title])
except Exception as e:
st.error(f"Error al cargar el video: {str(e)}")
st.markdown("""
## Novedades de la versión actual
- Nueva función de análisis semántico
- Soporte para múltiples idiomas
- Interfaz mejorada para una mejor experiencia de usuario
""")
##################################################################################################
def register_form():
st.header("Solicitar usuario y contraseña para probar la aplicación")
name = st.text_input("Nombre completo")
email = st.text_input("Correo electrónico institucional")
institution = st.text_input("Institución")
role = st.selectbox("Rol", ["Estudiante", "Profesor", "Investigador", "Otro"])
reason = st.text_area("¿Por qué estás interesado en probar AIdeaText?")
if st.button("Enviar solicitud"):
logger.info(f"Attempting to submit application for {email}")
logger.debug(f"Form data: name={name}, email={email}, institution={institution}, role={role}, reason={reason}")
if not name or not email or not institution or not reason:
logger.warning("Incomplete form submission")
st.error("Por favor, completa todos los campos.")
elif not is_institutional_email(email):
logger.warning(f"Non-institutional email used: {email}")
st.error("Por favor, utiliza un correo electrónico institucional.")
else:
logger.info(f"Attempting to store application for {email}")
success = store_application_request(name, email, institution, role, reason)
if success:
st.success("Tu solicitud ha sido enviada. Te contactaremos pronto.")
logger.info(f"Application request stored successfully for {email}")
else:
st.error("Hubo un problema al enviar tu solicitud. Por favor, intenta de nuevo más tarde.")
logger.error(f"Failed to store application request for {email}")
################################################################################
def display_feedback_form(lang_code):
logging.info(f"display_feedback_form called with lang_code: {lang_code}")
translations = {
'es': {
'title': "Formulario de Retroalimentación",
'name': "Nombre",
'email': "Correo electrónico",
'feedback': "Tu retroalimentación",
'feedback_guide': "Por favor, considera las siguientes preguntas al proporcionar tu retroalimentación:\n\n• ¿Qué funcionalidades valoras más?\n• ¿Qué aspectos mejorarías de la app?\n• ¿Consideras que esta herramienta sería útil en tu vida académica o profesional?",
'submit': "Enviar",
'success': "¡Gracias por tu retroalimentación!",
'error': "Hubo un problema al enviar el formulario. Por favor, intenta de nuevo."
},
'en': {
'title': "Feedback Form",
'name': "Name",
'email': "Email",
'feedback': "Your feedback",
'feedback_guide': "Please consider the following questions when providing your feedback:\n\n• Which features do you value the most?\n• What aspects of the app would you improve?\n• Do you consider this tool would be useful in your academic or professional life?",
'submit': "Submit",
'submit': "Submit",
'success': "Thank you for your feedback!",
'error': "There was a problem submitting the form. Please try again."
},
'fr': {
'title': "Formulaire de Rétroaction",
'name': "Nom",
'email': "Adresse e-mail",
'feedback': "Votre rétroaction",
'feedback_guide': "Veuillez considérer les questions suivantes en fournissant votre rétroaction :\n\n• Quelles fonctionnalités appréciez-vous le plus ?\n• Quels aspects de l'application amélioreriez-vous ?\n• Pensez-vous que cet outil serait utile dans votre vie académique ou professionnelle ?",
'submit': "Envoyer",
'success': "Merci pour votre rétroaction !",
'error': "Un problème est survenu lors de l'envoi du formulaire. Veuillez réessayer."
}
}
t = translations[lang_code]
st.header(t['title'])
name = st.text_input(t['name'])
email = st.text_input(t['email'])
st.markdown(t['feedback_guide'])
feedback = st.text_area(t['feedback'])
if st.button(t['submit']):
if name and email and feedback:
if store_user_feedback(st.session_state.username, name, email, feedback):
st.success(t['success'])
else:
st.error(t['error'])
else:
st.warning("Por favor, completa todos los campos.")
################################################################################
def is_institutional_email(email):
forbidden_domains = ['gmail.com', 'hotmail.com', 'yahoo.com', 'outlook.com']
return not any(domain in email.lower() for domain in forbidden_domains)
################################################################################
def display_student_progress(username, lang_code='es'):
student_data = get_student_data(username)
if student_data is None or len(student_data['entries']) == 0:
st.warning("No se encontraron datos para este estudiante.")
st.info("Intenta realizar algunos análisis de texto primero.")
return
st.title(f"Progreso de {username}")
with st.expander("Resumen de Actividades y Progreso", expanded=True):
# Resumen de actividades
total_entries = len(student_data['entries'])
st.write(f"Total de análisis realizados: {total_entries}")
# Gráfico de tipos de análisis
analysis_types = [entry['analysis_type'] for entry in student_data['entries']]
analysis_counts = pd.Series(analysis_types).value_counts()
fig, ax = plt.subplots()
analysis_counts.plot(kind='bar', ax=ax)
ax.set_title("Tipos de análisis realizados")
ax.set_xlabel("Tipo de análisis")
ax.set_ylabel("Cantidad")
st.pyplot(fig)
# Progreso a lo largo del tiempo
dates = [datetime.fromisoformat(entry['timestamp']) for entry in student_data['entries']]
analysis_counts = pd.Series(dates).value_counts().sort_index()
fig, ax = plt.subplots()
analysis_counts.plot(kind='line', ax=ax)
ax.set_title("Análisis realizados a lo largo del tiempo")
ax.set_xlabel("Fecha")
ax.set_ylabel("Cantidad de análisis")
st.pyplot(fig)
##########################################################
with st.expander("Histórico de Análisis Morfosintácticos"):
morphosyntax_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'morphosyntax']
for entry in morphosyntax_entries:
st.subheader(f"Análisis del {entry['timestamp']}")
if entry['arc_diagrams']:
st.write(entry['arc_diagrams'][0], unsafe_allow_html=True)
##########################################################
with st.expander("Histórico de Análisis Semánticos"):
semantic_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'semantic']
for entry in semantic_entries:
st.subheader(f"Análisis del {entry['timestamp']}")
# Mostrar conceptos clave
if 'key_concepts' in entry:
st.write("Conceptos clave:")
concepts_str = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts']])
#st.write("Conceptos clave:")
#st.write(concepts_str)
st.markdown(f"
{concepts_str}
", unsafe_allow_html=True)
# Mostrar gráfico
if 'graph' in entry:
try:
img_bytes = base64.b64decode(entry['graph'])
st.image(img_bytes, caption="Gráfico de relaciones conceptuales")
except Exception as e:
st.error(f"No se pudo mostrar el gráfico: {str(e)}")
##########################################################
with st.expander("Histórico de Análisis Discursivos"):
discourse_entries = [entry for entry in student_data['entries'] if entry['analysis_type'] == 'discourse']
for entry in discourse_entries:
st.subheader(f"Análisis del {entry['timestamp']}")
# Mostrar conceptos clave para ambos documentos
if 'key_concepts1' in entry:
concepts_str1 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts1']])
st.write("Conceptos clave del documento 1:")
#st.write(concepts_str1)
st.markdown(f"
{concepts_str1}
", unsafe_allow_html=True)
if 'key_concepts2' in entry:
concepts_str2 = " | ".join([f"{concept} ({frequency:.2f})" for concept, frequency in entry['key_concepts2']])
st.write("Conceptos clave del documento 2:")
#st.write(concepts_str2)
st.markdown(f"
{concepts_str2}
", unsafe_allow_html=True)
try:
if 'combined_graph' in entry and entry['combined_graph']:
img_bytes = base64.b64decode(entry['combined_graph'])
st.image(img_bytes)
elif 'graph1' in entry and 'graph2' in entry:
col1, col2 = st.columns(2)
with col1:
if entry['graph1']:
img_bytes1 = base64.b64decode(entry['graph1'])
st.image(img_bytes1)
with col2:
if entry['graph2']:
img_bytes2 = base64.b64decode(entry['graph2'])
st.image(img_bytes2)
else:
st.write("No se encontraron gráficos para este análisis.")
except Exception as e:
st.error(f"No se pudieron mostrar los gráficos: {str(e)}")
st.write("Datos de los gráficos (para depuración):")
if 'graph1' in entry:
st.write("Graph 1:", entry['graph1'][:100] + "...")
if 'graph2' in entry:
st.write("Graph 2:", entry['graph2'][:100] + "...")
if 'combined_graph' in entry:
st.write("Combined Graph:", entry['combined_graph'][:100] + "...")
##########################################################
with st.expander("Histórico de Conversaciones con el ChatBot"):
if 'chat_history' in student_data:
for i, chat in enumerate(student_data['chat_history']):
st.subheader(f"Conversación {i+1} - {chat['timestamp']}")
for message in chat['messages']:
if message['role'] == 'user':
st.write("Usuario: " + message['content'])
else:
st.write("Asistente: " + message['content'])
st.write("---")
else:
st.write("No se encontraron conversaciones con el ChatBot.")
# Añadir logs para depuración
if st.checkbox("Mostrar datos de depuración"):
st.write("Datos del estudiante (para depuración):")
st.json(student_data)
##################################################################################################
def display_morphosyntax_analysis_interface(nlp_models, lang_code):
translations = {
'es': {
'title': "AIdeaText - Análisis morfológico y sintáctico",
'input_label': "Ingrese un texto para analizar (máximo 5,000 palabras",
'input_placeholder': "Esta funcionalidad le ayudará con dos competencias:\n"
"[1] \"Escribe diversos tipos de textos en su lengua materna\"\n"
"[2] \"Lee diversos tipos de textos escritos en su lengua materna\"\n\n"
"Ingrese su texto aquí para analizar...",
'analyze_button': "Analizar texto",
'repeated_words': "Palabras repetidas",
'legend': "Leyenda: Categorías gramaticales",
'arc_diagram': "Análisis sintáctico: Diagrama de arco",
'sentence': "Oración",
'success_message': "Análisis guardado correctamente.",
'error_message': "Hubo un problema al guardar el análisis. Por favor, inténtelo de nuevo.",
'warning_message': "Por favor, ingrese un texto para analizar.",
'initial_message': "Ingrese un texto y presione 'Analizar texto' para comenzar.",
'no_results': "No hay resultados disponibles. Por favor, realice un análisis primero.",
'pos_analysis': "Análisis de categorías gramaticales",
'morphological_analysis': "Análisis morfológico",
'sentence_structure': "Estructura de oraciones",
'word': "Palabra",
'count': "Cantidad",
'percentage': "Porcentaje",
'examples': "Ejemplos",
'lemma': "Lema",
'tag': "Etiqueta",
'dep': "Dependencia",
'morph': "Morfología",
'root': "Raíz",
'subjects': "Sujetos",
'objects': "Objetos",
'verbs': "Verbos",
'grammatical_category': "Categoría gramatical",
'dependency': "Dependencia",
'morphology': "Morfología"
},
'en': {
'title': "AIdeaText - Morphological and Syntactic Analysis",
'input_label': "Enter a text to analyze (max 5,000 words):",
'input_placeholder': "This functionality will help you with two competencies:\n"
"[1] \"Write various types of texts in your native language\"\n"
"[2] \"Read various types of written texts in your native language\"\n\n"
"Enter your text here to analyze...",
'analyze_button': "Analyze text",
'repeated_words': "Repeated words",
'legend': "Legend: Grammatical categories",
'arc_diagram': "Syntactic analysis: Arc diagram",
'sentence': "Sentence",
'success_message': "Analysis saved successfully.",
'error_message': "There was a problem saving the analysis. Please try again.",
'warning_message': "Please enter a text to analyze.",
'initial_message': "Enter a text and press 'Analyze text' to start.",
'no_results': "No results available. Please perform an analysis first.",
'pos_analysis': "Part of Speech Analysis",
'morphological_analysis': "Morphological Analysis",
'sentence_structure': "Sentence Structure",
'word': "Word",
'count': "Count",
'percentage': "Percentage",
'examples': "Examples",
'lemma': "Lemma",
'tag': "Tag",
'dep': "Dependency",
'morph': "Morphology",
'root': "Root",
'subjects': "Subjects",
'objects': "Objects",
'verbs': "Verbs",
'grammatical_category': "Grammatical category",
'dependency': "Dependency",
'morphology': "Morphology"
},
'fr': {
'title': "AIdeaText - Analyse morphologique et syntaxique",
'input_label': "Entrez un texte à analyser (max 5 000 mots) :",
'input_placeholder': "Cette fonctionnalité vous aidera avec deux compétences :\n"
"[1] \"Écrire divers types de textes dans votre langue maternelle\"\n"
"[2] \"Lire divers types de textes écrits dans votre langue maternelle\"\n\n"
"Entrez votre texte ici pour l'analyser...",
'analyze_button': "Analyser le texte",
'repeated_words': "Mots répétés",
'legend': "Légende : Catégories grammaticales",
'arc_diagram': "Analyse syntaxique : Diagramme en arc",
'sentence': "Phrase",
'success_message': "Analyse enregistrée avec succès.",
'error_message': "Un problème est survenu lors de l'enregistrement de l'analyse. Veuillez réessayer.",
'warning_message': "Veuillez entrer un texte à analyser.",
'initial_message': "Entrez un texte et appuyez sur 'Analyser le texte' pour commencer.",
'no_results': "Aucun résultat disponible. Veuillez d'abord effectuer une analyse.",
'pos_analysis': "Analyse des parties du discours",
'morphological_analysis': "Analyse morphologique",
'sentence_structure': "Structure des phrases",
'word': "Mot",
'count': "Nombre",
'percentage': "Pourcentage",
'examples': "Exemples",
'lemma': "Lemme",
'tag': "Étiquette",
'dep': "Dépendance",
'morph': "Morphologie",
'root': "Racine",
'subjects': "Sujets",
'objects': "Objets",
'verbs': "Verbes",
'grammatical_category': "Catégorie grammaticale",
'dependency': "Dépendance",
'morphology': "Morphologie"
}
}
t = translations[lang_code]
input_key = f"morphosyntax_input_{lang_code}"
if input_key not in st.session_state:
st.session_state[input_key] = ""
sentence_input = st.text_area(
t['input_label'],
height=150,
placeholder=t['input_placeholder'],
value=st.session_state[input_key],
key=f"text_area_{lang_code}",
on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"])
)
if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"):
current_input = st.session_state[input_key]
if current_input:
doc = nlp_models[lang_code](current_input)
# Análisis morfosintáctico avanzado
advanced_analysis = perform_advanced_morphosyntactic_analysis(current_input, nlp_models[lang_code])
# Guardar el resultado en el estado de la sesión
st.session_state.morphosyntax_result = {
'doc': doc,
'advanced_analysis': advanced_analysis
}
# Mostrar resultados
display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t)
# Guardar resultados
if store_morphosyntax_result(
st.session_state.username,
current_input,
get_repeated_words_colors(doc),
advanced_analysis['arc_diagram'],
advanced_analysis['pos_analysis'],
advanced_analysis['morphological_analysis'],
advanced_analysis['sentence_structure']
):
st.success(t['success_message'])
else:
st.error(t['error_message'])
else:
st.warning(t['warning_message'])
elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None:
# Si hay un resultado guardado, mostrarlo
display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t)
else:
st.info(t['initial_message']) # Añade esta traducción a tu diccionario
def display_morphosyntax_results(result, lang_code, t):
if result is None:
st.warning(t['no_results']) # Añade esta traducción a tu diccionario
return
doc = result['doc']
advanced_analysis = result['advanced_analysis']
# Mostrar leyenda (código existente)
st.markdown(f"##### {t['legend']}")
legend_html = "
"
for pos, color in POS_COLORS.items():
if pos in POS_TRANSLATIONS[lang_code]:
legend_html += f"