import gradio as gr from huggingface_hub import InferenceClient import os from threading import Event hf_token = os.getenv("HF_TOKEN") stop_event = Event() models = { "deepseek-ai/DeepSeek-Coder-V2-Instruct": "(한국회사)DeepSeek-Coder-V2-Instruct", "meta-llama/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct", "mistralai/Mixtral-8x7B-Instruct-v0.1": "Mixtral-8x7B-Instruct-v0.1", "CohereForAI/c4ai-command-r-plus": "Cohere Command-R Plus" } def get_client(model): return InferenceClient(model=model, token=hf_token) MAX_HISTORY_LENGTH = 5 # 히스토리에 유지할 최대 대화 수 def truncate_history(history): return history[-MAX_HISTORY_LENGTH:] if len(history) > MAX_HISTORY_LENGTH else history def respond(message, history, system_message, max_tokens, temperature, top_p, selected_model): stop_event.clear() client = InferenceClient(model=selected_model, token=hf_token) truncated_history = truncate_history(history) messages = [{"role": "system", "content": system_message + "\n사용자의 입력에만 직접적으로 답변하세요. 추가 질문을 생성하거나 사용자의 입력을 확장하지 마세요."}] messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for h in truncated_history for i, m in enumerate(h) if m]) messages.append({"role": "user", "content": message}) try: response = "" for chunk in client.text_generation( prompt="\n".join([f"{m['role']}: {m['content']}" for m in messages]), max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True ): if stop_event.is_set(): break if chunk: response += chunk if response.startswith(message): response = response[len(message):].lstrip() yield truncated_history + [(message, response)] except Exception as e: yield truncated_history + [(message, f"오류 발생: {str(e)}")] def continue_writing(message, history, system_message, max_tokens, temperature, top_p, selected_model): if not history: yield [("시스템", "대화 내역이 없습니다.")] return truncated_history = truncate_history(history) last_assistant_message = truncated_history[-1][1] prompt = f"이전 대화를 간단히 요약하고 이어서 작성해주세요. 마지막 응답: {last_assistant_message[:100]}..." async for response in respond(prompt, truncated_history[:-1], system_message, max_tokens, temperature, top_p, selected_model): yield response def stop_generation(): stop_event.set() return "생성이 중단되었습니다." def regenerate(chat_history, system_message, max_tokens, temperature, top_p, selected_model): if not chat_history: return "대화 내역이 없습니다." last_user_message = chat_history[-1][0] return respond(last_user_message, chat_history[:-1], system_message, max_tokens, temperature, top_p, selected_model) with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox(label="메시지 입력", placeholder="메시지를 입력하세요. Enter로 전송, Shift+Enter로 줄바꿈") with gr.Row(): send = gr.Button("전송") continue_btn = gr.Button("계속 작성") regenerate_btn = gr.Button("🔄 재생성") stop = gr.Button("🛑 생성 중단") clear = gr.Button("🗑️ 대화 내역 지우기") with gr.Accordion("추가 설정", open=True): system_message = gr.Textbox( value="너는 나의 최고의 비서이다.\n내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.\n반드시 한글로 답변할것.", label="시스템 메시지", lines=5 ) max_tokens = gr.Slider(minimum=1, maximum=2000, value=500, step=100, label="최대 새 토큰 수") temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="온도") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.90, step=0.05, label="Top-p (핵 샘플링)") model = gr.Radio(list(models.keys()), value=list(models.keys())[0], label="언어 모델 선택", info="사용할 언어 모델을 선택하세요") # Event handlers msg.submit(respond, [msg, chatbot, system_message, max_tokens, temperature, top_p, model], [chatbot]) send.click(respond, [msg, chatbot, system_message, max_tokens, temperature, top_p, model], [chatbot]) continue_btn.click(continue_writing, [msg, chatbot, system_message, max_tokens, temperature, top_p, model], [chatbot]) regenerate_btn.click(regenerate, [chatbot, system_message, max_tokens, temperature, top_p, model], [chatbot]) stop.click(stop_generation, outputs=[msg]) clear.click(lambda: None, outputs=[chatbot]) if __name__ == "__main__": if not hf_token: print("경고: HF_TOKEN 환경 변수가 설정되지 않았습니다. 일부 모델에 접근할 수 없을 수 있습니다.") demo.launch()