Spaces:
Sleeping
Sleeping
File size: 1,391 Bytes
689e5f5 eacff3c a803ac2 eacff3c 689e5f5 0a2443d 689e5f5 c7154a6 fdb58ce c7154a6 689e5f5 bbe16a1 c7154a6 689e5f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
# this is the custome function to return pre-process the image to size (150 150 3)
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
import gradio as gr
from keras.models import load_model
def custom_Image_preprocessing(image_data, target_size=(150, 150)):
img = image.array_to_img(image_data, data_format='channels_last')
img = img.resize(target_size) # Resize the image if needed
img_arr = image.img_to_array(img)
img_arr = img_arr * 1./255
img_arr = np.expand_dims(img_arr, axis=0)
return img_arr
# function to predict the custome image
def image_predict(image_path):
model = load_model("Second_model.h5")
image_preprocess = custom_Image_preprocessing(image_path)
result = model.predict(image_preprocess)
if ( result <= 0.5 ):
return 'Negative',round(result[0][0]*100,2),'%'
else:
return 'Positive',round(result[0][0]*100,2),'%'
# Define Gradio interface
input_component = gr.components.Image(label = "Upload the X-Ray")
output_component = gr.components.Textbox(label = "Result")
interface = gr.Interface(fn=image_predict, inputs=input_component, outputs=output_component,title = "Lung Cancer x-Ray Classification",description = "This web app provides predictions based on X-Ray images and predict either the X-ray contains sympotms of lung cancer or not ")
interface.launch()
|