AIQuest commited on
Commit
1988ea3
·
verified ·
1 Parent(s): 04aac7f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -3,6 +3,7 @@ import numpy as np
3
  import cv2
4
  import gradio as gr
5
  import pickle
 
6
  # function which is returning the number of object detected
7
  def number_object_detected(image):
8
 
@@ -18,9 +19,13 @@ def number_object_detected(image):
18
  for e , count in zip(unique_elements,counts):
19
  a = dic[e]
20
  class_count[a] = count
21
-
 
 
 
22
  return (class_count,results )
23
 
 
24
  def car_detection_and_Cropping(image_path):
25
  simple_yolo = YOLO('yolov8m.pt')
26
  r = simple_yolo(image_path,verbose = False)
@@ -54,7 +59,6 @@ def car_detection_and_Cropping(image_path):
54
  class_c ,result= number_object_detected(image_path)
55
  return class_c ,result
56
 
57
-
58
  severity_points = {
59
  'scratch': 1,
60
  'dent': 2,
@@ -81,7 +85,7 @@ def estimate_condition(detections):
81
  print("normalized Score",normalized_score)
82
  # Assign condition rating
83
  if normalized_score <= 4: # If score is low, condition is Excellent
84
- print("Condition is Excellent")
85
  return "Excellent"
86
  elif (normalized_score >4 and normalized_score <=7): # If score is moderately low, condition is Good
87
 
@@ -96,12 +100,9 @@ def estimate_condition(detections):
96
 
97
  return "Very Poor"
98
 
99
-
100
-
101
  with open('Price_prediction_decision_tree.pkl', 'rb') as file:
102
  loaded_pipe_lr = pickle.load(file)
103
 
104
-
105
  ## loading the model
106
  def process_data(files,car_brand, car_name, model_year, mileage, city_registered, color, engine_c, trans, fuel_type, Cate):
107
 
@@ -131,8 +132,9 @@ def process_data(files,car_brand, car_name, model_year, mileage, city_registered
131
  if price[0] >= 100:
132
  price[0] = price[0]/100
133
 
134
- return (condition , str(price[0])+'lacs' , image_r)
135
 
 
136
 
137
  years_list = list(range(2024, 1899, -1))
138
  gr.Interface(fn = process_data,
@@ -148,5 +150,4 @@ gr.Interface(fn = process_data,
148
  # gr.Radio(["imported", "local"], label="Assembly Type"),
149
  gr.Radio(["hybrid", "petrol",'diesel'], label="Fuel Type"),
150
  gr.Radio(["hatchback", "sedan",'suv','croosover','van'], label="Category")],
151
- outputs=[gr.Textbox(label="Predicted Price"),gr.Gallery(label='output',type='pil')]).launch()
152
-
 
3
  import cv2
4
  import gradio as gr
5
  import pickle
6
+
7
  # function which is returning the number of object detected
8
  def number_object_detected(image):
9
 
 
19
  for e , count in zip(unique_elements,counts):
20
  a = dic[e]
21
  class_count[a] = count
22
+ #print(class_count)
23
+
24
+
25
+
26
  return (class_count,results )
27
 
28
+
29
  def car_detection_and_Cropping(image_path):
30
  simple_yolo = YOLO('yolov8m.pt')
31
  r = simple_yolo(image_path,verbose = False)
 
59
  class_c ,result= number_object_detected(image_path)
60
  return class_c ,result
61
 
 
62
  severity_points = {
63
  'scratch': 1,
64
  'dent': 2,
 
85
  print("normalized Score",normalized_score)
86
  # Assign condition rating
87
  if normalized_score <= 4: # If score is low, condition is Excellent
88
+
89
  return "Excellent"
90
  elif (normalized_score >4 and normalized_score <=7): # If score is moderately low, condition is Good
91
 
 
100
 
101
  return "Very Poor"
102
 
 
 
103
  with open('Price_prediction_decision_tree.pkl', 'rb') as file:
104
  loaded_pipe_lr = pickle.load(file)
105
 
 
106
  ## loading the model
107
  def process_data(files,car_brand, car_name, model_year, mileage, city_registered, color, engine_c, trans, fuel_type, Cate):
108
 
 
132
  if price[0] >= 100:
133
  price[0] = price[0]/100
134
 
135
+ return ( str(price[0])+'lacs' , image_r)
136
 
137
+
138
 
139
  years_list = list(range(2024, 1899, -1))
140
  gr.Interface(fn = process_data,
 
150
  # gr.Radio(["imported", "local"], label="Assembly Type"),
151
  gr.Radio(["hybrid", "petrol",'diesel'], label="Fuel Type"),
152
  gr.Radio(["hatchback", "sedan",'suv','croosover','van'], label="Category")],
153
+ outputs=[gr.Textbox(label="Predicted Price"),gr.Gallery(label='output',type='pil')]).launch()