# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py # and https://github.com/tencent-ailab/IP-Adapter/blob/9fc189e3fb389cc2b60a7d0c0850e083a716ea6e/ip_adapter/resampler.py import math import torch import torch.nn as nn from einops import rearrange from einops.layers.torch import Rearrange # FFN def FeedForward(dim, mult=4): inner_dim = int(dim * mult) return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, inner_dim, bias=False), nn.GELU(), nn.Linear(inner_dim, dim, bias=False), ) def reshape_tensor(x, heads): bs, length, width = x.shape # (bs, length, width) --> (bs, length, n_heads, dim_per_head) x = x.view(bs, length, heads, -1) # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) x = x.transpose(1, 2) # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) x = x.reshape(bs, heads, length, -1) return x class PerceiverAttention(nn.Module): def __init__(self, *, dim, dim_head=64, heads=8): super().__init__() self.scale = dim_head ** -0.5 self.dim_head = dim_head self.heads = heads inner_dim = dim_head * heads self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, x, latents): """ Args: x (torch.Tensor): image features shape (b, n1, D) latent (torch.Tensor): latent features shape (b, n2, D) """ x = self.norm1(x) latents = self.norm2(latents) b, l, _ = latents.shape q = self.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) k, v = self.to_kv(kv_input).chunk(2, dim=-1) q = reshape_tensor(q, self.heads) k = reshape_tensor(k, self.heads) v = reshape_tensor(v, self.heads) # attention scale = 1 / math.sqrt(math.sqrt(self.dim_head)) weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) out = weight @ v out = out.permute(0, 2, 1, 3).reshape(b, l, -1) return self.to_out(out) class Resampler(nn.Module): def __init__( self, dim=1024, depth=8, dim_head=64, heads=16, num_queries=8, embedding_dim=768, output_dim=1024, ff_mult=4, max_seq_len: int = 257, # CLIP tokens + CLS token apply_pos_emb: bool = False, num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence ): super().__init__() self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5) self.proj_in = nn.Linear(embedding_dim, dim) self.proj_out = nn.Linear(dim, output_dim) self.norm_out = nn.LayerNorm(output_dim) self.to_latents_from_mean_pooled_seq = ( nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, dim * num_latents_mean_pooled), Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled), ) if num_latents_mean_pooled > 0 else None ) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList( [ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), FeedForward(dim=dim, mult=ff_mult), ] ) ) def forward(self, x): if self.pos_emb is not None: n, device = x.shape[1], x.device pos_emb = self.pos_emb(torch.arange(n, device=device)) x = x + pos_emb latents = self.latents.repeat(x.size(0), 1, 1) x = self.proj_in(x) if self.to_latents_from_mean_pooled_seq: meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool)) meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq) latents = torch.cat((meanpooled_latents, latents), dim=-2) for attn, ff in self.layers: latents = attn(x, latents) + latents latents = ff(latents) + latents latents = self.proj_out(latents) return self.norm_out(latents) def masked_mean(t, *, dim, mask=None): if mask is None: return t.mean(dim=dim) denom = mask.sum(dim=dim, keepdim=True) mask = rearrange(mask, "b n -> b n 1") masked_t = t.masked_fill(~mask, 0.0) return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)