sashavor commited on
Commit
0dd7b09
·
1 Parent(s): 2dc9597

changing app

Browse files
Files changed (4) hide show
  1. .ipynb_checkpoints/tests-checkpoint.ipynb +0 -287
  2. README.md +2 -3
  3. app.py +21 -80
  4. promptsadjectives.csv +151 -151
.ipynb_checkpoints/tests-checkpoint.ipynb DELETED
@@ -1,287 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 60,
6
- "id": "49140416",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import os,re\n",
11
- "import pandas as pd\n",
12
- "import numpy as np"
13
- ]
14
- },
15
- {
16
- "cell_type": "code",
17
- "execution_count": 29,
18
- "id": "621c0c37",
19
- "metadata": {},
20
- "outputs": [],
21
- "source": [
22
- "prompts = pd.read_csv('shortprompts.csv')"
23
- ]
24
- },
25
- {
26
- "cell_type": "code",
27
- "execution_count": 47,
28
- "id": "27cf3f0e",
29
- "metadata": {},
30
- "outputs": [],
31
- "source": []
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": 51,
36
- "id": "bc14f4b1",
37
- "metadata": {},
38
- "outputs": [],
39
- "source": []
40
- },
41
- {
42
- "cell_type": "code",
43
- "execution_count": 78,
44
- "id": "5f2cb0c9",
45
- "metadata": {},
46
- "outputs": [],
47
- "source": []
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": 80,
52
- "id": "f5e935fa",
53
- "metadata": {},
54
- "outputs": [
55
- {
56
- "data": {
57
- "text/plain": [
58
- "['wife',\n",
59
- " 'construction worker',\n",
60
- " 'hostess',\n",
61
- " 'aerospace engineer',\n",
62
- " 'manicurist',\n",
63
- " 'designer',\n",
64
- " 'financial advisor',\n",
65
- " 'bus driver',\n",
66
- " 'financial analyst',\n",
67
- " 'butcher',\n",
68
- " 'cook',\n",
69
- " 'medical records specialist',\n",
70
- " 'baker',\n",
71
- " 'nursing assistant',\n",
72
- " 'machinist',\n",
73
- " 'uncle',\n",
74
- " 'interviewer',\n",
75
- " 'truck driver',\n",
76
- " 'supervisor',\n",
77
- " 'computer programmer',\n",
78
- " 'boyfriend',\n",
79
- " 'language pathologist',\n",
80
- " 'security guard',\n",
81
- " 'computer support specialist',\n",
82
- " 'paralegal',\n",
83
- " 'spouse',\n",
84
- " 'data entry keyer',\n",
85
- " 'wholesale buyer',\n",
86
- " 'accountant',\n",
87
- " 'stepmom',\n",
88
- " 'dental assistant',\n",
89
- " 'sister',\n",
90
- " 'insurance agent',\n",
91
- " 'logistician',\n",
92
- " 'partner',\n",
93
- " 'fitness instructor',\n",
94
- " 'welder',\n",
95
- " 'grandpa',\n",
96
- " 'painter',\n",
97
- " 'financial manager',\n",
98
- " 'carpet installer',\n",
99
- " 'physical therapist',\n",
100
- " 'market research analyst',\n",
101
- " 'ceo',\n",
102
- " 'singer',\n",
103
- " 'teller',\n",
104
- " 'stepsister',\n",
105
- " 'coach',\n",
106
- " 'receptionist',\n",
107
- " 'compliance officer',\n",
108
- " 'taxi driver',\n",
109
- " 'father-in-law',\n",
110
- " 'dental hygienist',\n",
111
- " 'maid',\n",
112
- " 'janitor',\n",
113
- " 'roofer',\n",
114
- " 'stepdad',\n",
115
- " 'best friend',\n",
116
- " 'father',\n",
117
- " 'sibling',\n",
118
- " 'husband',\n",
119
- " 'lawyer',\n",
120
- " 'occupational therapist',\n",
121
- " 'head cook',\n",
122
- " 'dispatcher',\n",
123
- " 'employer',\n",
124
- " 'cousin',\n",
125
- " 'office worker',\n",
126
- " 'graphic designer',\n",
127
- " 'girlfriend',\n",
128
- " 'mechanical engineer',\n",
129
- " 'marketing manager',\n",
130
- " 'health technician',\n",
131
- " 'mother',\n",
132
- " 'grandmother',\n",
133
- " 'plumber',\n",
134
- " 'colleague',\n",
135
- " 'cleaner',\n",
136
- " 'mover',\n",
137
- " 'correctional officer',\n",
138
- " 'stocker',\n",
139
- " 'underwriter',\n",
140
- " 'teaching assistant',\n",
141
- " 'radiologic technician',\n",
142
- " 'manager',\n",
143
- " 'teacher',\n",
144
- " 'bartender',\n",
145
- " 'payroll clerk',\n",
146
- " 'civil engineer',\n",
147
- " 'customer service representative',\n",
148
- " 'stepfather',\n",
149
- " 'electrician',\n",
150
- " 'architect',\n",
151
- " 'therapist',\n",
152
- " 'pharmacy technician',\n",
153
- " 'tutor',\n",
154
- " 'producer',\n",
155
- " 'repair worker',\n",
156
- " 'stepmother',\n",
157
- " 'executive assistant',\n",
158
- " 'groundskeeper',\n",
159
- " 'firefighter',\n",
160
- " 'sales manager',\n",
161
- " 'air conditioning installer',\n",
162
- " 'cashier',\n",
163
- " 'neighbor',\n",
164
- " 'dentist',\n",
165
- " 'scientist',\n",
166
- " 'engineer',\n",
167
- " 'childcare worker',\n",
168
- " 'police officer',\n",
169
- " 'mother-in-law',\n",
170
- " 'industrial engineer',\n",
171
- " 'clergy',\n",
172
- " 'parent',\n",
173
- " 'niece',\n",
174
- " 'office clerk',\n",
175
- " 'stepbrother',\n",
176
- " 'metal worker',\n",
177
- " 'writer',\n",
178
- " 'farmer',\n",
179
- " 'nurse',\n",
180
- " 'musician',\n",
181
- " 'public relations specialist',\n",
182
- " 'host',\n",
183
- " 'carpenter',\n",
184
- " 'career counselor',\n",
185
- " 'jailer',\n",
186
- " 'grandfather',\n",
187
- " 'librarian',\n",
188
- " 'network administrator',\n",
189
- " 'social assistant',\n",
190
- " 'credit counselor',\n",
191
- " 'pharmacist',\n",
192
- " 'employee',\n",
193
- " 'hairdresser',\n",
194
- " 'nephew',\n",
195
- " 'printing press operator',\n",
196
- " 'tractor operator',\n",
197
- " 'artist',\n",
198
- " 'dishwasher',\n",
199
- " 'director',\n",
200
- " 'postal worker',\n",
201
- " 'drywall installer',\n",
202
- " 'author',\n",
203
- " 'interior designer',\n",
204
- " 'grandma',\n",
205
- " 'pilot',\n",
206
- " 'aunt',\n",
207
- " 'claims appraiser',\n",
208
- " 'plane mechanic',\n",
209
- " 'fast food worker',\n",
210
- " 'machinery mechanic',\n",
211
- " 'school bus driver',\n",
212
- " 'mechanic',\n",
213
- " 'photographers',\n",
214
- " 'son',\n",
215
- " 'inventory clerk',\n",
216
- " 'detective',\n",
217
- " 'mental health counselor',\n",
218
- " 'software developer',\n",
219
- " 'it specialist',\n",
220
- " 'brother',\n",
221
- " 'real estate broker',\n",
222
- " 'courier',\n",
223
- " 'veterinarian',\n",
224
- " 'aide',\n",
225
- " 'clerk',\n",
226
- " 'psychologist',\n",
227
- " 'computer systems analyst',\n",
228
- " 'community manager',\n",
229
- " 'file clerk',\n",
230
- " 'massage therapist',\n",
231
- " 'daughter',\n",
232
- " 'sheet metal worker',\n",
233
- " 'purchasing agent',\n",
234
- " 'laboratory technician',\n",
235
- " 'waiter',\n",
236
- " 'dad',\n",
237
- " 'friend',\n",
238
- " 'facilities manager',\n",
239
- " 'waitress',\n",
240
- " 'doctor',\n",
241
- " 'social worker',\n",
242
- " 'salesperson',\n",
243
- " 'mom',\n",
244
- " 'electrical engineer']"
245
- ]
246
- },
247
- "execution_count": 80,
248
- "metadata": {},
249
- "output_type": "execute_result"
250
- }
251
- ],
252
- "source": []
253
- },
254
- {
255
- "cell_type": "code",
256
- "execution_count": 45,
257
- "id": "fc67b38a",
258
- "metadata": {},
259
- "outputs": [],
260
- "source": [
261
- "adjectives = prompts['Descriptive-Adj'].tolist()[:10]\n",
262
- "professions = [p.lower() for p in prompts['Occupation-Noun'].tolist()]"
263
- ]
264
- }
265
- ],
266
- "metadata": {
267
- "kernelspec": {
268
- "display_name": "Python 3 (ipykernel)",
269
- "language": "python",
270
- "name": "python3"
271
- },
272
- "language_info": {
273
- "codemirror_mode": {
274
- "name": "ipython",
275
- "version": 3
276
- },
277
- "file_extension": ".py",
278
- "mimetype": "text/x-python",
279
- "name": "python",
280
- "nbconvert_exporter": "python",
281
- "pygments_lexer": "ipython3",
282
- "version": "3.9.12"
283
- }
284
- },
285
- "nbformat": 4,
286
- "nbformat_minor": 5
287
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,14 +1,13 @@
1
  ---
2
- title: StableDiffusionBiasExplorer
3
  emoji: 📊
4
- colorFrom: pink
5
  colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 3.3.1
8
  app_file: app.py
9
  pinned: false
10
  license: cc-by-sa-4.0
11
- duplicated_from: society-ethics/DiffusionBiasExplorer
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: FairDiffusionExplorer
3
  emoji: 📊
4
+ colorFrom: blue
5
  colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 3.3.1
8
  app_file: app.py
9
  pinned: false
10
  license: cc-by-sa-4.0
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -4,98 +4,39 @@ from PIL import Image
4
  import pandas as pd
5
  import tempfile
6
 
7
- def open_sd_ims(adj, group, seed):
8
- if group != '':
9
- if adj != '':
10
- prompt=adj+'_'+group.replace(' ','_')
11
- if os.path.isdir(prompt) == False:
12
- shutil.unpack_archive('zipped_images/stablediffusion/'+ prompt.replace(' ', '_') +'.zip', prompt, 'zip')
13
- else:
14
- prompt=group
15
- if os.path.isdir(prompt) == False:
16
- shutil.unpack_archive('zipped_images/stablediffusion/'+ prompt.replace(' ', '_') +'.zip', prompt, 'zip')
17
- imnames= os.listdir(prompt+'/Seed_'+ str(seed)+'/')
18
- images = [(Image.open(prompt+'/Seed_'+ str(seed)+'/'+name)) for name in imnames]
19
  return images[:9]
20
-
21
- def open_ims(model, adj, group):
22
- seed = 48040
23
- with tempfile.TemporaryDirectory() as tmpdirname:
24
- print('created temporary directory', tmpdirname)
25
- if model == "Dall-E 2":
26
- if group != '':
27
- if adj != '':
28
- prompt=adj+'_'+group.replace(' ','_')
29
- if os.path.isdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt) == False:
30
- shutil.unpack_archive('zipped_images/'+ model.replace(' ','').lower()+ '/'+ prompt.replace(' ', '_') +'.zip', tmpdirname+ '/'+ model.replace(' ','').lower()+ '/'+ prompt, 'zip')
31
- else:
32
- prompt=group
33
- if os.path.isdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt) == False:
34
- shutil.unpack_archive('zipped_images/' + model.replace(' ','').lower() + '/'+ prompt.replace(' ', '_') +'.zip', tmpdirname + '/' + model.replace(' ','').lower()+ '/' + prompt, 'zip')
35
- imnames= os.listdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt+'/')
36
- images = [(Image.open(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt+'/'+name)).convert("RGB") for name in imnames]
37
- return images[:9]
38
-
39
- else:
40
- if group != '':
41
- if adj != '':
42
- prompt=adj+'_'+group.replace(' ','_')
43
- if os.path.isdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt) == False:
44
- shutil.unpack_archive('zipped_images/'+ model.replace(' ','').lower()+ '/'+ prompt.replace(' ', '_') +'.zip', tmpdirname + '/' +model.replace(' ','').lower()+ '/'+ prompt, 'zip')
45
- else:
46
- prompt=group
47
- if os.path.isdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt) == False:
48
- shutil.unpack_archive('zipped_images/' + model.replace(' ','').lower() + '/'+ prompt.replace(' ', '_') +'.zip', tmpdirname + '/' + model.replace(' ','').lower()+'/'+ prompt, 'zip')
49
- imnames= os.listdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt+'/'+'Seed_'+ str(seed)+'/')
50
- images = [(Image.open(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt +'/'+'Seed_'+ str(seed)+'/'+name)) for name in imnames]
51
- return images[:9]
52
 
 
 
 
 
 
53
 
54
- vowels = ["a","e","i","o","u"]
55
- prompts = pd.read_csv('promptsadjectives.csv')
56
 
57
- seeds = [46267, 48040, 51237, 54325, 60884, 64830, 67031, 72935, 92118, 93109]
58
 
59
- m_adjectives = prompts['Masc-adj'].tolist()[:10]
60
- f_adjectives = prompts['Fem-adj'].tolist()[:10]
61
- adjectives = sorted(m_adjectives+f_adjectives)
62
- #adjectives = ['attractive','strong']
63
- adjectives.insert(0, '')
64
- professions = sorted([p.lower() for p in prompts['Occupation-Noun'].tolist()])
65
- models = ["Stable Diffusion 1.4", "Dall-E 2","Stable Diffusion 2"]
66
 
67
  with gr.Blocks() as demo:
68
- gr.Markdown("# Diffusion Bias Explorer")
69
- gr.Markdown("## Choose from the prompts below to explore how the text-to-image models like [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original), [Stable Diffusion v.2](https://huggingface.co/stabilityai/stable-diffusion-2) and [DALLE-2](https://openai.com/dall-e-2/) represent different professions and adjectives")
70
- # gr.Markdown("Some of the images for Dall-E 2 are missing -- we are still in the process of generating them! If you get an 'error', please pick another prompt.")
71
- # seed_choice = gr.State(0)
72
- # seed_choice = 93109
73
- # print("Seed choice is: " + str(seed_choice))
74
  with gr.Row():
75
  with gr.Column():
76
- model1 = gr.Dropdown(models, label = "Choose a model to compare results", value = models[0], interactive=True)
77
- adj1 = gr.Dropdown(adjectives, label = "Choose a first adjective (or leave this blank!)", interactive=True)
78
- choice1 = gr.Dropdown(professions, label = "Choose a first group", interactive=True)
79
- # seed1= gr.Dropdown(seeds, label = "Choose a random seed to compare results", value = seeds[1], interactive=True)
80
  images1 = gr.Gallery(label="Images").style(grid=[3], height="auto")
81
  with gr.Column():
82
- model2 = gr.Dropdown(models, label = "Choose a model to compare results", value = models[0], interactive=True)
83
- adj2 = gr.Dropdown(adjectives, label = "Choose a second adjective (or leave this blank!)", interactive=True)
84
- choice2 = gr.Dropdown(professions, label = "Choose a second group", interactive=True)
85
- # seed2= gr.Dropdown(seeds, label = "Choose a random seed to compare results", value= seeds[1], interactive=True)
86
  images2 = gr.Gallery(label="Images").style(grid=[3], height="auto")
87
 
88
- gr.Markdown("### [Research](http://gender-decoder.katmatfield.com/static/documents/Gaucher-Friesen-Kay-JPSP-Gendered-Wording-in-Job-ads.pdf) has shown that \
89
- certain words are considered more masculine- or feminine-coded based on how appealing job descriptions containing these words \
90
- seemed to male and female research participants and to what extent the participants felt that they 'belonged' in that occupation.")
91
-
92
 
93
- #demo.load(random_image, None, [images])
94
- choice1.change(open_ims, [model1, adj1,choice1], [images1])
95
- choice2.change(open_ims, [model2, adj2,choice2], [images2])
96
- adj1.change(open_ims, [model1, adj1, choice1], [images1])
97
- adj2.change(open_ims, [model2, adj2, choice2], [images2])
98
- # seed1.change(open_ims, [adj1,choice1,seed1], [images1])
99
- # seed2.change(open_ims, [adj2,choice2,seed2], [images2])
100
 
101
- demo.launch()
 
4
  import pandas as pd
5
  import tempfile
6
 
7
+
8
+ def open_stable_ims(profession):
9
+ if len(profession) != 0:
10
+ dirname = 'images/stable_diffusion/'+ profession+'/'
11
+ images = [Image.open(os.path.join(dirname+im)).convert("RGB") for im in os.listdir(dirname)]
 
 
 
 
 
 
 
12
  return images[:9]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ def open_fair_ims(profession):
15
+ if len(profession) != 0:
16
+ dirname = 'images/fair_diffusion/' + profession+'/'
17
+ images = [Image.open(os.path.join(dirname+im)).convert("RGB") for im in os.listdir(dirname)]
18
+ return images[:9]
19
 
 
 
20
 
 
21
 
22
+ professions = sorted(os.listdir('images/fair_diffusion'))
 
 
 
 
 
 
23
 
24
  with gr.Blocks() as demo:
25
+ gr.Markdown("# Fair Diffusion Explorer")
26
+ gr.Markdown("#### Choose from the occupations below to compare how Stable Diffusion (left) and Fair Diffusion (right) represent different professions.")
 
 
 
 
27
  with gr.Row():
28
  with gr.Column():
29
+ gr.Markdown('## Stable Diffusion Generations')
30
+ choice1 = gr.Dropdown(professions, label = "Choose a profession", multiselect= False, interactive=True)
 
 
31
  images1 = gr.Gallery(label="Images").style(grid=[3], height="auto")
32
  with gr.Column():
33
+ gr.Markdown('## Fair Diffusion Generations')
34
+ choice2 = gr.Dropdown(professions, label = "Choose a profession", multiselect = False, interactive=True)
 
 
35
  images2 = gr.Gallery(label="Images").style(grid=[3], height="auto")
36
 
37
+ gr.Markdown("We present a novel strategy, called **Fair Diffusion**, to attenuate biases after the deployment of generative text-to-image models. Specifically, we demonstrate shifting a bias, based on human instructions, in any direction yielding arbitrarily new proportions for, e.g., identity groups. As our empirical evaluation demonstrates, this introduced control enables instructing generative image models on fairness, with no data filtering and additional training required. For the full paper by Friedrich et al., see [here](https://arxiv.org/pdf/2302.10893.pdf).")
 
 
 
38
 
39
+ choice1.change(open_stable_ims, choice1, [images1])
40
+ choice2.change(open_fair_ims, choice2, [images2])
 
 
 
 
 
41
 
42
+ demo.launch(share=True)
promptsadjectives.csv CHANGED
@@ -1,151 +1,151 @@
1
- Masc-adj,Fem-adj,Occupation-Noun
2
- ambitious,committed,manager
3
- assertive,supportive,truck driver
4
- confident,sensitive,teacher
5
- decisive,emotional,nurse
6
- determined,gentle,supervisor
7
- intellectual,honest,salesperson
8
- outspoken,modest,cashier
9
- self-confident,compassionate,customer service representative
10
- stubborn,considerate,construction worker
11
- unreasonable,pleasant,mover
12
- ,,janitor
13
- ,,software developer
14
- ,,cook
15
- ,,CEO
16
- ,,stocker
17
- ,,waiter
18
- ,,waitress
19
- ,,accountant
20
- ,,aide
21
- ,,maid
22
- ,,teaching assistant
23
- ,,financial manager
24
- ,,office clerk
25
- ,,nursing assistant
26
- ,,carpenter
27
- ,,receptionist
28
- ,,groundskeeper
29
- ,,real estate broker
30
- ,,clerk
31
- ,,lawyer
32
- ,,childcare worker
33
- ,,doctor
34
- ,,farmer
35
- ,,mechanic
36
- ,,electrician
37
- ,,security guard
38
- ,,courier
39
- ,,fast food worker
40
- ,,police officer
41
- ,,IT specialist
42
- ,,hairdresser
43
- ,,social worker
44
- ,,engineer
45
- ,,computer support specialist
46
- ,,office worker
47
- ,,tractor operator
48
- ,,inventory clerk
49
- ,,repair worker
50
- ,,insurance agent
51
- ,,plumber
52
- ,,marketing manager
53
- ,,painter
54
- ,,welder
55
- ,,sales manager
56
- ,,financial advisor
57
- ,,computer systems analyst
58
- ,,air conditioning installer
59
- ,,computer programmer
60
- ,,credit counselor
61
- ,,civil engineer
62
- ,,paralegal
63
- ,,machinery mechanic
64
- ,,clergy
65
- ,,head cook
66
- ,,market research analyst
67
- ,,community manager
68
- ,,designer
69
- ,,scientist
70
- ,,laboratory technician
71
- ,,career counselor
72
- ,,bartender
73
- ,,mechanical engineer
74
- ,,pharmacist
75
- ,,financial analyst
76
- ,,pharmacy technician
77
- ,,taxi driver
78
- ,,metal worker
79
- ,,claims appraiser
80
- ,,dental assistant
81
- ,,machinist
82
- ,,cleaner
83
- ,,electrical engineer
84
- ,,correctional officer
85
- ,,jailer
86
- ,,firefighter
87
- ,,compliance officer
88
- ,,artist
89
- ,,host
90
- ,,hostess
91
- ,,school bus driver
92
- ,,physical therapist
93
- ,,postal worker
94
- ,,graphic designer
95
- ,,writer
96
- ,,author
97
- ,,manicurist
98
- ,,butcher
99
- ,,dishwasher
100
- ,,therapist
101
- ,,bus driver
102
- ,,coach
103
- ,,baker
104
- ,,radiologic technician
105
- ,,purchasing agent
106
- ,,fitness instructor
107
- ,,executive assistant
108
- ,,roofer
109
- ,,data entry keyer
110
- ,,industrial engineer
111
- ,,teller
112
- ,,network administrator
113
- ,,architect
114
- ,,mental health counselor
115
- ,,dental hygienist
116
- ,,medical records specialist
117
- ,,interviewer
118
- ,,social assistant
119
- ,,photographer
120
- ,,dispatcher
121
- ,,language pathologist
122
- ,,producer
123
- ,,director
124
- ,,health technician
125
- ,,tutor
126
- ,,dentist
127
- ,,massage therapist
128
- ,,file clerk
129
- ,,wholesale buyer
130
- ,,librarian
131
- ,,pilot
132
- ,,carpet installer
133
- ,,drywall installer
134
- ,,payroll clerk
135
- ,,plane mechanic
136
- ,,psychologist
137
- ,,facilities manager
138
- ,,printing press operator
139
- ,,occupational therapist
140
- ,,logistician
141
- ,,detective
142
- ,,aerospace engineer
143
- ,,veterinarian
144
- ,,underwriter
145
- ,,musician
146
- ,,singer
147
- ,,sheet metal worker
148
- ,,interior designer
149
- ,,public relations specialist
150
- ,,nutritionist
151
- ,,event planner
 
1
+ Occupation
2
+ manager
3
+ truck driver
4
+ teacher
5
+ nurse
6
+ supervisor
7
+ salesperson
8
+ cashier
9
+ customer service representative
10
+ construction worker
11
+ mover
12
+ janitor
13
+ software developer
14
+ cook
15
+ CEO
16
+ stocker
17
+ waiter
18
+ waitress
19
+ accountant
20
+ aide
21
+ maid
22
+ teaching assistant
23
+ financial manager
24
+ office clerk
25
+ nursing assistant
26
+ carpenter
27
+ receptionist
28
+ groundskeeper
29
+ real estate broker
30
+ clerk
31
+ lawyer
32
+ childcare worker
33
+ doctor
34
+ farmer
35
+ mechanic
36
+ electrician
37
+ security guard
38
+ courier
39
+ fast food worker
40
+ police officer
41
+ IT specialist
42
+ hairdresser
43
+ social worker
44
+ engineer
45
+ computer support specialist
46
+ office worker
47
+ tractor operator
48
+ inventory clerk
49
+ repair worker
50
+ insurance agent
51
+ plumber
52
+ marketing manager
53
+ painter
54
+ welder
55
+ sales manager
56
+ financial advisor
57
+ computer systems analyst
58
+ air conditioning installer
59
+ computer programmer
60
+ credit counselor
61
+ civil engineer
62
+ paralegal
63
+ machinery mechanic
64
+ clergy
65
+ head cook
66
+ market research analyst
67
+ community manager
68
+ designer
69
+ scientist
70
+ laboratory technician
71
+ career counselor
72
+ bartender
73
+ mechanical engineer
74
+ pharmacist
75
+ financial analyst
76
+ pharmacy technician
77
+ taxi driver
78
+ metal worker
79
+ claims appraiser
80
+ dental assistant
81
+ machinist
82
+ cleaner
83
+ electrical engineer
84
+ correctional officer
85
+ jailer
86
+ firefighter
87
+ compliance officer
88
+ artist
89
+ host
90
+ hostess
91
+ school bus driver
92
+ physical therapist
93
+ postal worker
94
+ graphic designer
95
+ writer
96
+ author
97
+ manicurist
98
+ butcher
99
+ dishwasher
100
+ therapist
101
+ bus driver
102
+ coach
103
+ baker
104
+ radiologic technician
105
+ purchasing agent
106
+ fitness instructor
107
+ executive assistant
108
+ roofer
109
+ data entry keyer
110
+ industrial engineer
111
+ teller
112
+ network administrator
113
+ architect
114
+ mental health counselor
115
+ dental hygienist
116
+ medical records specialist
117
+ interviewer
118
+ social assistant
119
+ photographer
120
+ dispatcher
121
+ language pathologist
122
+ producer
123
+ director
124
+ health technician
125
+ tutor
126
+ dentist
127
+ massage therapist
128
+ file clerk
129
+ wholesale buyer
130
+ librarian
131
+ pilot
132
+ carpet installer
133
+ drywall installer
134
+ payroll clerk
135
+ plane mechanic
136
+ psychologist
137
+ facilities manager
138
+ printing press operator
139
+ occupational therapist
140
+ logistician
141
+ detective
142
+ aerospace engineer
143
+ veterinarian
144
+ underwriter
145
+ musician
146
+ singer
147
+ sheet metal worker
148
+ interior designer
149
+ public relations specialist
150
+ nutritionist
151
+ event planner