Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain_groq import ChatGroq
|
6 |
+
from langchain_chroma import Chroma
|
7 |
+
from langchain_community.document_loaders import WebBaseLoader, MongodbLoader
|
8 |
+
from langchain_core.prompts import ChatPromptTemplate
|
9 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.chains import create_retrieval_chain, create_history_aware_retriever
|
11 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
12 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
13 |
+
from langchain_core.prompts import MessagesPlaceholder
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
load_dotenv()
|
17 |
+
groq_api_key = os.getenv('GROQ_API_KEY')
|
18 |
+
hf_token = os.getenv('HF_TOKEN')
|
19 |
+
|
20 |
+
# Initialize the ChatGroq model
|
21 |
+
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-8b-8192")
|
22 |
+
|
23 |
+
# Initialize embeddings
|
24 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
25 |
+
embeddings = HuggingFaceEmbeddings(model_name='all-MiniLM-L6-v2')
|
26 |
+
|
27 |
+
# MongoDB data loading setup
|
28 |
+
loader = MongodbLoader(
|
29 |
+
connection_string="mongodb+srv://deshcode0:[email protected]/?retryWrites=true&w=majority&appName=deshcode0",
|
30 |
+
db_name="sample_mflix",
|
31 |
+
collection_name="movies",
|
32 |
+
field_names = ["_id", "plot", "genres", "runtime", "cast", "poster", "title", "fullplot", "languages", "released", "directors", "rated", "awards", "lastupdated", "year", "imdb", "countries", "type", "tomatoes", "num_mflix_comments"],
|
33 |
+
)
|
34 |
+
docs = loader.load()
|
35 |
+
|
36 |
+
# Split documents and initialize Chroma vector store
|
37 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
38 |
+
splits = text_splitter.split_documents(docs)
|
39 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
|
40 |
+
retriever = vectorstore.as_retriever()
|
41 |
+
|
42 |
+
# Define prompt templates
|
43 |
+
system_prompt = (
|
44 |
+
"You are an assistant for question-answering tasks. "
|
45 |
+
"Use the following pieces of retrieved context to answer "
|
46 |
+
"the question. If you don't know the answer, say that you "
|
47 |
+
"don't know. Use three sentences maximum and keep the "
|
48 |
+
"answer concise.\n\n{context}"
|
49 |
+
)
|
50 |
+
|
51 |
+
qa_prompt = ChatPromptTemplate.from_messages(
|
52 |
+
[
|
53 |
+
("system", system_prompt),
|
54 |
+
MessagesPlaceholder("chat_history"),
|
55 |
+
("human", "{input}"),
|
56 |
+
]
|
57 |
+
)
|
58 |
+
|
59 |
+
# Initialize the retrieval chain
|
60 |
+
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
|
61 |
+
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
62 |
+
|
63 |
+
# Streamlit App
|
64 |
+
st.title("LLM-Powered Question Answering with Memory")
|
65 |
+
|
66 |
+
# Initialize session state for chat history
|
67 |
+
if "chat_history" not in st.session_state:
|
68 |
+
st.session_state.chat_history = []
|
69 |
+
|
70 |
+
# Sidebar for question input
|
71 |
+
st.sidebar.title("Ask a Question")
|
72 |
+
question = st.sidebar.text_input("Enter your question:")
|
73 |
+
|
74 |
+
# Retrieve and display the answer
|
75 |
+
if question:
|
76 |
+
# Add question to chat history
|
77 |
+
st.session_state.chat_history.append(HumanMessage(content=question))
|
78 |
+
|
79 |
+
# Retrieve answer with context from chat history
|
80 |
+
response = rag_chain.invoke({"input": question, "chat_history": st.session_state.chat_history})
|
81 |
+
|
82 |
+
# Display the answer
|
83 |
+
st.write("**Answer:**")
|
84 |
+
st.write(response['answer'])
|
85 |
+
|
86 |
+
# Add answer to chat history
|
87 |
+
st.session_state.chat_history.append(AIMessage(content=response['answer']))
|
88 |
+
|
89 |
+
# Display chat history in the main app
|
90 |
+
st.write("## Chat History")
|
91 |
+
for message in st.session_state.chat_history:
|
92 |
+
if isinstance(message, HumanMessage):
|
93 |
+
st.write(f"**You:** {message.content}")
|
94 |
+
elif isinstance(message, AIMessage):
|
95 |
+
st.write(f"**Bot:** {message.content}")
|