#############################################################################
# Title: BERUFENET.AI
# Author: Andreas Fischer
# Date: January 4th, 2024
# Last update: October 15th, 2024
#############################################################################
dbPath="/home/af/Schreibtisch/Code/gradio/BERUFENET/db"
if(os.path.exists(dbPath)==False): dbPath="/home/user/app/db"
print(dbPath)
# Chroma-DB
#-----------
import chromadb
from chromadb import Documents, EmbeddingFunction, Embeddings
import torch # chromaDB
from transformers import AutoTokenizer, AutoModel # chromaDB
jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
#jira.save_pretrained("jinaai_jina-embeddings-v2-base-de")
device='cuda:0' if torch.cuda.is_available() else 'cpu'
jina.to(device) #cuda:0
print(device)
class JinaEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
embeddings = jina.encode(input) #max_length=2048
return(embeddings.tolist())
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
from chromadb.utils import embedding_functions
#default_ef = embedding_functions.DefaultEmbeddingFunction()
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
jina_ef=JinaEmbeddingFunction()
embeddingFunction=jina_ef
print(str(client.list_collections()))
global collection
if("name=BerufenetDB1" in str(client.list_collections())):
print("BerufenetDB1 found!")
collection = client.get_collection(name=, embedding_function=embeddingFunction)
print("Database ready!")
print(collection.count())
# Gradio-GUI
#------------
from huggingface_hub import InferenceClient
import gradio as gr
import json
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1"
def format_prompt(message, history):
prompt = "" #""
#for user_prompt, bot_response in history:
# prompt += f"[INST] {user_prompt} [/INST]"
# prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def response(prompt, history, hfToken):
inferenceClient=""
if(hfToken.startswith("hf_")): # use HF-hub with custom token if token is provided
inferenceClient = InferenceClient(model=myModel, token=hfToken)
else:
inferenceClient = InferenceClient(myModel)
generate_kwargs = dict(temperature=float(0.9), max_new_tokens=500, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=42)
addon=""
results=collection.query(
query_texts=[prompt],
n_results=5
)
dists=["
(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]]
sources=["source: "+s["source"]+")" for s in results['metadatas'][0]]
results=results['documents'][0]
combination = zip(results,dists,sources)
combination = [' '.join(triplets) for triplets in combination]
print(str(prompt)+"\n\n"+str(combination))
if(len(results)>1):
addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results)
system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem, das zu jedem Anliegen möglichst geeignete Berufe empfiehlt."+addon+"\n\nUser-Anliegen:"
formatted_prompt = format_prompt(system+"\n"+prompt, history)
output = ""
print(""+str(inferenceClient))
try:
stream = inferenceClient.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
for response in stream:
output += response.token.text
yield output
except Exception as e:
output = "Für weitere Antworten von der KI gebe bitte einen gültigen HuggingFace-Token an."
if(len(combination)>0):
output += "\nBis dahin helfen dir hoffentlich die folgenden Quellen weiter:"
yield output
print(str(e))
output=output+"\n\n
Sources
"+ "".join(["- " + s + "
" for s in combination])+"
"
yield output
gr.ChatInterface(
response,
chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten passenden Berufe empfiehlt.
Erzähle mir, was du gerne tust!"]],render_markdown=True),
title="BERUFENET.AI (Jina-Embeddings)",
additional_inputs=[
gr.Textbox(
value="",
label="HF_token"),
]
).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!")