Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,9 @@ from fastapi import FastAPI
|
|
8 |
from pydantic import BaseModel
|
9 |
from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast, AutoTokenizer, AutoModel
|
10 |
|
11 |
-
# Set
|
|
|
|
|
12 |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface"
|
13 |
|
14 |
app = FastAPI()
|
@@ -22,63 +24,77 @@ if not os.path.exists(DATASET_PATH):
|
|
22 |
# Load dataset
|
23 |
df = pd.read_json(DATASET_PATH)
|
24 |
|
25 |
-
# Clean text function
|
26 |
def clean_text(text):
|
27 |
return text.strip().lower()
|
28 |
|
29 |
-
df[
|
30 |
|
31 |
-
# Precompute BM25 Index
|
32 |
tokenized_corpus = [paper.split() for paper in df["cleaned_abstract"]]
|
33 |
bm25 = BM25Okapi(tokenized_corpus)
|
34 |
|
35 |
-
# Load
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
# Generate embeddings using SciBERT
|
41 |
-
def generate_embeddings_sci_bert(texts, batch_size=32):
|
42 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
model.to(device)
|
44 |
-
|
45 |
all_embeddings = []
|
46 |
for i in range(0, len(texts), batch_size):
|
47 |
-
batch = texts[i:i + batch_size]
|
48 |
inputs = tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
49 |
inputs = {key: val.to(device) for key, val in inputs.items()}
|
50 |
-
|
51 |
with torch.no_grad():
|
52 |
outputs = model(**inputs)
|
53 |
-
|
54 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
55 |
all_embeddings.append(embeddings.cpu().numpy())
|
56 |
-
|
|
|
|
|
57 |
return np.concatenate(all_embeddings, axis=0)
|
58 |
|
59 |
-
# Compute
|
60 |
abstracts = df["cleaned_abstract"].tolist()
|
61 |
-
embeddings = generate_embeddings_sci_bert(abstracts, batch_size=
|
62 |
|
63 |
-
# Initialize FAISS index
|
64 |
dimension = embeddings.shape[1]
|
65 |
faiss_index = faiss.IndexFlatL2(dimension)
|
66 |
faiss_index.add(embeddings.astype(np.float32))
|
67 |
|
68 |
-
# API Request Model
|
69 |
class InputText(BaseModel):
|
70 |
query: str
|
71 |
top_k: int = 5
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
query = data.query
|
76 |
-
top_k = data.top_k
|
77 |
-
|
78 |
if not query.strip():
|
79 |
return {"error": "Query is empty. Please enter a valid search query."}
|
80 |
|
81 |
-
# 1️⃣ Generate embedding
|
82 |
query_embedding = generate_embeddings_sci_bert([query], batch_size=1)
|
83 |
|
84 |
# 2️⃣ Perform FAISS similarity search
|
@@ -93,7 +109,7 @@ async def predict(data: InputText):
|
|
93 |
combined_indices = list(set(indices[0]) | set(bm25_top_indices))
|
94 |
ranked_results = sorted(combined_indices, key=lambda idx: -bm25_scores[idx])
|
95 |
|
96 |
-
# 5️⃣ Retrieve
|
97 |
relevant_papers = []
|
98 |
for i, index in enumerate(ranked_results[:top_k]):
|
99 |
paper = df.iloc[index]
|
@@ -101,11 +117,16 @@ async def predict(data: InputText):
|
|
101 |
"rank": i + 1,
|
102 |
"title": paper["title"],
|
103 |
"authors": paper["authors"],
|
104 |
-
"abstract": paper["cleaned_abstract"]
|
105 |
})
|
106 |
|
107 |
return {"results": relevant_papers}
|
108 |
|
|
|
|
|
|
|
|
|
|
|
109 |
# Run FastAPI
|
110 |
if __name__ == "__main__":
|
111 |
import uvicorn
|
|
|
8 |
from pydantic import BaseModel
|
9 |
from transformers import DistilBertForSequenceClassification, DistilBertTokenizerFast, AutoTokenizer, AutoModel
|
10 |
|
11 |
+
# ✅ Set cache directory to /tmp/huggingface (fixes permission error)
|
12 |
+
os.environ["HF_HOME"] = "/tmp/huggingface"
|
13 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
14 |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface"
|
15 |
|
16 |
app = FastAPI()
|
|
|
24 |
# Load dataset
|
25 |
df = pd.read_json(DATASET_PATH)
|
26 |
|
27 |
+
# ✅ Clean text function
|
28 |
def clean_text(text):
|
29 |
return text.strip().lower()
|
30 |
|
31 |
+
df["cleaned_abstract"] = df["abstract"].apply(clean_text)
|
32 |
|
33 |
+
# ✅ Precompute BM25 Index
|
34 |
tokenized_corpus = [paper.split() for paper in df["cleaned_abstract"]]
|
35 |
bm25 = BM25Okapi(tokenized_corpus)
|
36 |
|
37 |
+
# ✅ Load embedding models
|
38 |
+
embedding_models = {
|
39 |
+
"BERT": "bert-base-uncased",
|
40 |
+
"DistilBERT": "distilbert-base-uncased",
|
41 |
+
"Sentence-BERT": "all-MiniLM-L6-v2",
|
42 |
+
"MiniLM": "sentence-transformers/all-MiniLM-L12-v2",
|
43 |
+
"SciBERT": "allenai/scibert_scivocab_uncased",
|
44 |
+
}
|
45 |
+
|
46 |
+
BATCH_SIZE = 32 # Batch size for processing
|
47 |
+
|
48 |
+
# ✅ Function to clear GPU memory
|
49 |
+
def clear_gpu_memory():
|
50 |
+
torch.cuda.empty_cache()
|
51 |
+
|
52 |
+
# ✅ Generate embeddings using SciBERT
|
53 |
+
def generate_embeddings_sci_bert(texts, batch_size=BATCH_SIZE):
|
54 |
+
model_name = "allenai/scibert_scivocab_uncased"
|
55 |
+
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="/tmp/huggingface")
|
57 |
+
model = AutoModel.from_pretrained(model_name, cache_dir="/tmp/huggingface")
|
58 |
|
|
|
|
|
59 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
60 |
model.to(device)
|
61 |
+
|
62 |
all_embeddings = []
|
63 |
for i in range(0, len(texts), batch_size):
|
64 |
+
batch = texts[i : i + batch_size]
|
65 |
inputs = tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
66 |
inputs = {key: val.to(device) for key, val in inputs.items()}
|
67 |
+
|
68 |
with torch.no_grad():
|
69 |
outputs = model(**inputs)
|
70 |
+
|
71 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
72 |
all_embeddings.append(embeddings.cpu().numpy())
|
73 |
+
|
74 |
+
clear_gpu_memory()
|
75 |
+
|
76 |
return np.concatenate(all_embeddings, axis=0)
|
77 |
|
78 |
+
# ✅ Compute embeddings
|
79 |
abstracts = df["cleaned_abstract"].tolist()
|
80 |
+
embeddings = generate_embeddings_sci_bert(abstracts, batch_size=BATCH_SIZE)
|
81 |
|
82 |
+
# ✅ Initialize FAISS index
|
83 |
dimension = embeddings.shape[1]
|
84 |
faiss_index = faiss.IndexFlatL2(dimension)
|
85 |
faiss_index.add(embeddings.astype(np.float32))
|
86 |
|
87 |
+
# ✅ API Request Model
|
88 |
class InputText(BaseModel):
|
89 |
query: str
|
90 |
top_k: int = 5
|
91 |
|
92 |
+
# ✅ Hybrid Search Function
|
93 |
+
def get_relevant_papers(query, top_k=5):
|
|
|
|
|
|
|
94 |
if not query.strip():
|
95 |
return {"error": "Query is empty. Please enter a valid search query."}
|
96 |
|
97 |
+
# 1️⃣ Generate query embedding
|
98 |
query_embedding = generate_embeddings_sci_bert([query], batch_size=1)
|
99 |
|
100 |
# 2️⃣ Perform FAISS similarity search
|
|
|
109 |
combined_indices = list(set(indices[0]) | set(bm25_top_indices))
|
110 |
ranked_results = sorted(combined_indices, key=lambda idx: -bm25_scores[idx])
|
111 |
|
112 |
+
# 5️⃣ Retrieve relevant papers
|
113 |
relevant_papers = []
|
114 |
for i, index in enumerate(ranked_results[:top_k]):
|
115 |
paper = df.iloc[index]
|
|
|
117 |
"rank": i + 1,
|
118 |
"title": paper["title"],
|
119 |
"authors": paper["authors"],
|
120 |
+
"abstract": paper["cleaned_abstract"],
|
121 |
})
|
122 |
|
123 |
return {"results": relevant_papers}
|
124 |
|
125 |
+
# ✅ FastAPI Endpoint
|
126 |
+
@app.post("/predict/")
|
127 |
+
async def predict(data: InputText):
|
128 |
+
return get_relevant_papers(data.query, data.top_k)
|
129 |
+
|
130 |
# Run FastAPI
|
131 |
if __name__ == "__main__":
|
132 |
import uvicorn
|