Spaces:
Sleeping
Sleeping
import os | |
import faiss | |
import numpy as np | |
from rank_bm25 import BM25Okapi | |
import torch | |
import pandas as pd | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModel | |
import google.generativeai as genai | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Set cache directory for Hugging Face models (SciBERT only) | |
os.environ["HF_HOME"] = "/tmp/huggingface" | |
# Get Gemini API key from environment variable (stored in Spaces secrets) | |
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") | |
if not GEMINI_API_KEY: | |
logger.error("GEMINI_API_KEY not set. Please set it in Hugging Face Spaces secrets.") | |
raise ValueError("GEMINI_API_KEY is required for Gemini API access.") | |
genai.configure(api_key=GEMINI_API_KEY) | |
logger.info("Gemini API configured") | |
# Load dataset with error handling | |
DATASET_PATH = os.path.join(os.getcwd(), "springer_papers_DL.json") | |
try: | |
if not os.path.exists(DATASET_PATH): | |
raise FileNotFoundError(f"Dataset file not found at {DATASET_PATH}") | |
df = pd.read_json(DATASET_PATH) | |
logger.info("Dataset loaded successfully") | |
except Exception as e: | |
logger.error(f"Failed to load dataset: {e}") | |
raise | |
# Clean text | |
def clean_text(text): | |
return text.strip().lower() if isinstance(text, str) else "" | |
df["cleaned_abstract"] = df["abstract"].apply(clean_text) | |
# Precompute BM25 Index | |
try: | |
tokenized_corpus = [paper.split() for paper in df["cleaned_abstract"]] | |
bm25 = BM25Okapi(tokenized_corpus) | |
logger.info("BM25 index created") | |
except Exception as e: | |
logger.error(f"BM25 index creation failed: {e}") | |
raise | |
# Load SciBERT for embeddings | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
logger.info(f"Using device: {device}") | |
try: | |
sci_bert_tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased", cache_dir="/tmp/huggingface") | |
sci_bert_model = AutoModel.from_pretrained("allenai/scibert_scivocab_uncased", cache_dir="/tmp/huggingface") | |
sci_bert_model.to(device) | |
sci_bert_model.eval() | |
logger.info("SciBERT loaded") | |
except Exception as e: | |
logger.error(f"Model loading failed: {e}") | |
raise | |
# Generate SciBERT embeddings | |
def generate_embeddings_sci_bert(texts, batch_size=32): | |
try: | |
all_embeddings = [] | |
for i in range(0, len(texts), batch_size): | |
batch = texts[i:i + batch_size] | |
inputs = sci_bert_tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
inputs = {key: val.to(device) for key, val in inputs.items()} | |
with torch.no_grad(): | |
outputs = sci_bert_model(**inputs) | |
embeddings = outputs.last_hidden_state.mean(dim=1) | |
all_embeddings.append(embeddings.cpu().numpy()) | |
torch.cuda.empty_cache() | |
return np.concatenate(all_embeddings, axis=0) | |
except Exception as e: | |
logger.error(f"Embedding generation failed: {e}") | |
return np.zeros((len(texts), 768)) | |
# Precompute embeddings and FAISS index | |
try: | |
abstracts = df["cleaned_abstract"].tolist() | |
embeddings = generate_embeddings_sci_bert(abstracts) | |
dimension = embeddings.shape[1] | |
faiss_index = faiss.IndexFlatL2(dimension) | |
faiss_index.add(embeddings.astype(np.float32)) | |
logger.info("FAISS index created") | |
except Exception as e: | |
logger.error(f"FAISS index creation failed: {e}") | |
raise | |
# Hybrid search function (return indices instead of truncated strings) | |
def get_relevant_papers(query): | |
if not query.strip(): | |
return [], "Please enter a search query." | |
try: | |
query_embedding = generate_embeddings_sci_bert([query]) | |
distances, indices = faiss_index.search(query_embedding.astype(np.float32), 5) | |
tokenized_query = query.split() | |
bm25_scores = bm25.get_scores(tokenized_query) | |
bm25_top_indices = np.argsort(bm25_scores)[::-1][:5] | |
combined_indices = list(set(indices[0]) | set(bm25_top_indices)) | |
ranked_results = sorted(combined_indices, key=lambda idx: -bm25_scores[idx]) | |
# Return formatted strings for dropdown and indices for full data | |
papers = [f"{i+1}. {df.iloc[idx]['title']} - Abstract: {df.iloc[idx]['abstract'][:200]}..." for i, idx in enumerate(ranked_results[:5])] | |
return papers, ranked_results[:5], "Search completed." | |
except Exception as e: | |
logger.error(f"Search failed: {e}") | |
return [], [], "Search failed. Please try again." | |
# Gemini API QA function with full context | |
def answer_question(selected_index, question, history): | |
if selected_index is None: | |
return [(question, "Please select a paper first!")], history | |
if not question.strip(): | |
return [(question, "Please ask a question!")], history | |
if question.lower() in ["exit", "done"]: | |
return [("Conversation ended.", "Select a new paper or search again!")], [] | |
try: | |
# Get full paper data from DataFrame using index | |
paper_data = df.iloc[selected_index] | |
title = paper_data["title"] | |
abstract = paper_data["abstract"] # Full abstract, not truncated | |
authors = ", ".join(paper_data["authors"]) | |
doi = paper_data["doi"] | |
# Build prompt with all fields | |
prompt = ( | |
"You are Dr. Sage, the world's most brilliant and reliable research assistant, specializing in machine learning, deep learning, and agriculture. " | |
"Your goal is to provide concise, accurate, and well-structured answers based on the given paper's details. " | |
"When asked about tech stacks or methods, follow these guidelines:\n" | |
"1. If the abstract explicitly mentions technologies (e.g., Python, TensorFlow), list them precisely with brief explanations.\n" | |
"2. If the abstract is vague (e.g., 'machine learning techniques'), infer the most likely tech stacks based on the context of crop prediction and modern research practices, and explain your reasoning.\n" | |
"3. Always respond in a clear, concise format—use bullet points for lists (e.g., tech stacks) and short paragraphs for explanations.\n" | |
"4. If the question requires prior conversation context, refer to it naturally to maintain coherence.\n" | |
"5. If the abstract lacks enough detail, supplement with plausible, domain-specific suggestions and note they are inferred.\n" | |
"6. Avoid speculation or fluff—stick to facts or educated guesses grounded in the field.\n\n" | |
"Here’s the paper:\n" | |
f"Title: {title}\n" | |
f"Authors: {authors}\n" | |
f"Abstract: {abstract}\n" | |
f"DOI: {doi}\n\n" | |
) | |
# Add history if present | |
if history: | |
prompt += "Previous conversation (use for context):\n" | |
for user_q, bot_a in history[-2:]: | |
prompt += f"User: {user_q}\nAssistant: {bot_a}\n" | |
prompt += f"Now, answer this question: {question}" | |
logger.info(f"Prompt sent to Gemini API: {prompt[:200]}...") | |
# Call Gemini API (Gemini 1.5 Flash) | |
model = genai.GenerativeModel("gemini-1.5-flash") | |
response = model.generate_content(prompt) | |
answer = response.text.strip() | |
# Fallback for poor responses | |
if not answer or len(answer) < 15: | |
answer = ( | |
"The abstract doesn’t provide specific technologies, but based on crop prediction with machine learning and deep learning, likely tech stacks include:\n" | |
"- Python: Core language for ML/DL.\n" | |
"- TensorFlow or PyTorch: Frameworks for deep learning models.\n" | |
"- Scikit-learn: For traditional ML algorithms.\n" | |
"- Pandas/NumPy: For data handling and preprocessing." | |
) | |
history.append((question, answer)) | |
return history, history | |
except Exception as e: | |
logger.error(f"QA failed: {e}") | |
history.append((question, "Sorry, I couldn’t process that. Try again!")) | |
return history, history | |
# Gradio UI | |
with gr.Blocks( | |
css=""" | |
.chatbot {height: 600px; overflow-y: auto;} | |
.sidebar {width: 300px;} | |
#main {display: flex; flex-direction: row;} | |
""", | |
theme=gr.themes.Default(primary_hue="blue") | |
) as demo: | |
gr.Markdown("# ResearchGPT - Paper Search & Chat") | |
with gr.Row(elem_id="main"): | |
# Sidebar for search | |
with gr.Column(scale=1, min_width=300, elem_classes="sidebar"): | |
gr.Markdown("### Search Papers") | |
query_input = gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning in healthcare") | |
search_btn = gr.Button("Search") | |
paper_dropdown = gr.Dropdown(label="Select a Paper", choices=[], interactive=True) | |
search_status = gr.Textbox(label="Search Status", interactive=False) | |
# States to store paper choices and indices | |
paper_choices_state = gr.State([]) | |
paper_indices_state = gr.State([]) | |
search_btn.click( | |
fn=get_relevant_papers, | |
inputs=query_input, | |
outputs=[paper_choices_state, paper_indices_state, search_status] | |
).then( | |
fn=lambda choices: gr.update(choices=choices, value=None), | |
inputs=paper_choices_state, | |
outputs=paper_dropdown | |
) | |
# Main chat area | |
with gr.Column(scale=3): | |
gr.Markdown("### Chat with Selected Paper") | |
selected_paper = gr.Textbox(label="Selected Paper", interactive=False) | |
chatbot = gr.Chatbot(label="Conversation", elem_classes="chatbot") | |
question_input = gr.Textbox(label="Ask a question", placeholder="e.g., What methods are used?") | |
chat_btn = gr.Button("Send") | |
# State to store conversation history and selected index | |
history_state = gr.State([]) | |
selected_index_state = gr.State(None) | |
# Update selected paper and index | |
def update_selected_paper(choice, indices): | |
if choice is None: | |
return "", None | |
index = int(choice.split(".")[0]) - 1 # Extract rank (e.g., "1." -> 0) | |
selected_idx = indices[index] | |
return choice, selected_idx | |
paper_dropdown.change( | |
fn=update_selected_paper, | |
inputs=[paper_dropdown, paper_indices_state], | |
outputs=[selected_paper, selected_index_state] | |
).then( | |
fn=lambda: [], | |
inputs=None, | |
outputs=chatbot | |
) | |
# Handle chat | |
chat_btn.click( | |
fn=answer_question, | |
inputs=[selected_index_state, question_input, history_state], | |
outputs=[chatbot, history_state] | |
).then( | |
fn=lambda: "", | |
inputs=None, | |
outputs=question_input | |
) | |
# Launch the app | |
demo.launch(server_name="0.0.0.0", server_port=7860) |