import argparse from PIL import Image import os import numpy as np import itertools class ImageProcessor: def __init__(self, input_folder, min_group, max_group, include_subfolders, pad): self.input_folder = input_folder self.min_group = min_group self.max_group = max_group self.include_subfolders = include_subfolders self.pad = pad self.image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.webp') self.losses = [] # List to store loss values for each image def get_image_paths(self): images = [] if self.include_subfolders: for dirpath, dirnames, filenames in os.walk(self.input_folder): for filename in filenames: if filename.endswith(self.image_extensions): images.append(os.path.join(dirpath, filename)) else: images = [os.path.join(self.input_folder, f) for f in os.listdir(self.input_folder) if f.endswith(self.image_extensions)] return images def group_images(self, images, group_size): sorted_images = sorted(images, key=lambda path: Image.open(path).size[0] / Image.open(path).size[1]) groups = [sorted_images[i:i+group_size] for i in range(0, len(sorted_images), group_size)] return groups def process_group(self, group): if len(group) > 0: aspect_ratios = self.get_aspect_ratios(group) avg_aspect_ratio = np.mean(aspect_ratios) self.calculate_losses(group, avg_aspect_ratio) def get_aspect_ratios(self, group): aspect_ratios = [] for path in group: with Image.open(path) as img: width, height = img.size aspect_ratios.append(width / height) return aspect_ratios def calculate_losses(self, group, avg_aspect_ratio): for j, path in enumerate(group): with Image.open(path) as img: loss = self.calculate_loss(img, avg_aspect_ratio) self.losses.append((path, loss)) # Add (path, loss) tuple to the list def calculate_loss(self, img, avg_aspect_ratio): img_aspect_ratio = img.width / img.height if img_aspect_ratio > avg_aspect_ratio: # Too wide, reduce width new_width = avg_aspect_ratio * img.height loss = abs(img.width - new_width) / img.width # Calculate loss value else: # Too tall, reduce height new_height = img.width / avg_aspect_ratio loss = abs(img.height - new_height) / img.height # Calculate loss value return loss def monte_carlo_optimization(self, groups): best_groups = groups.copy() best_loss = np.inf best_removed_images = [] for group in groups: num_images = len(group) all_combinations = [] # Generate all possible combinations of images to remove for r in range(1, num_images + 1): combinations = list(itertools.combinations(group, r)) all_combinations.extend(combinations) for combination in all_combinations: self.losses = [] # Reset losses for each combination remaining_images = list(set(group) - set(combination)) self.process_group(remaining_images) avg_loss = np.mean(self.losses) if avg_loss < best_loss: best_loss = avg_loss best_groups[best_groups.index(group)] = remaining_images best_removed_images = combination return best_groups, best_loss, best_removed_images def process_images(self): images = self.get_image_paths() num_images = len(images) results = [] for group_size in range(self.min_group, self.max_group + 1): groups = self.group_images(images, group_size) optimized_groups, avg_loss, removed_images = self.monte_carlo_optimization(groups) num_remaining = num_images % group_size results.append((group_size, avg_loss, num_remaining, optimized_groups, removed_images)) # Sort results based on average crop loss in ascending order sorted_results = sorted(results, key=lambda x: x[1]) for group_size, avg_loss, num_remaining, optimized_groups, removed_images in sorted_results: print(f"Group size: {group_size}, Average crop loss: {avg_loss}, Number of images remaining: {num_remaining}") print(f"Optimized Groups: {optimized_groups}") print(f"Removed Images: {removed_images}") def main(): parser = argparse.ArgumentParser(description='Process groups of images.') parser.add_argument('input_folder', type=str, help='Input folder containing images') parser.add_argument('min_group', type=int, help='Minimum group size') parser.add_argument('max_group', type=int, help='Maximum group size') parser.add_argument('--include_subfolders', action='store_true', help='Include subfolders in search for images') parser.add_argument('--pad', action='store_true', help='Pad images instead of cropping them') args = parser.parse_args() processor = ImageProcessor(args.input_folder, args.min_group, args.max_group, args.include_subfolders, args.pad) processor.process_images() if __name__ == "__main__": main()