A19grey's picture
Added trimesh install and allow user file download
84a6150
raw
history blame
8.89 kB
import gradio as gr
from PIL import Image
import src.depth_pro as depth_pro
import numpy as np
import matplotlib.pyplot as plt
import subprocess
import spaces
import torch
import tempfile
import os
import trimesh
import time # Add this import at the top of the file
# Run the script to download pretrained models
subprocess.run(["bash", "get_pretrained_models.sh"])
# Set the device to GPU if available, else CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load the depth prediction model and its preprocessing transforms
model, transform = depth_pro.create_model_and_transforms()
model = model.to(device) # Move the model to the selected device
model.eval() # Set the model to evaluation mode
def resize_image(image_path, max_size=1024):
"""
Resize the input image to ensure its largest dimension does not exceed max_size.
Maintains the aspect ratio and saves the resized image as a temporary PNG file.
Args:
image_path (str): Path to the input image.
max_size (int, optional): Maximum size for the largest dimension. Defaults to 1024.
Returns:
str: Path to the resized temporary image file.
"""
with Image.open(image_path) as img:
# Calculate the resizing ratio while maintaining aspect ratio
ratio = max_size / max(img.size)
new_size = tuple([int(x * ratio) for x in img.size])
# Resize the image using LANCZOS filter for high-quality downsampling
img = img.resize(new_size, Image.LANCZOS)
# Save the resized image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
img.save(temp_file, format="PNG")
return temp_file.name
def generate_3d_model(depth, image_path, focallength_px):
"""
Generate a textured 3D mesh from the depth map and the original image.
Args:
depth (np.ndarray): 2D array representing depth in meters.
image_path (str): Path to the resized RGB image.
focallength_px (float): Focal length in pixels.
Returns:
tuple: Paths to the exported 3D model files for viewing and downloading.
"""
# Load the RGB image and convert to a NumPy array
image = np.array(Image.open(image_path))
height, width = depth.shape
# Compute camera intrinsic parameters
fx = fy = focallength_px # Assuming square pixels and fx = fy
cx, cy = width / 2, height / 2 # Principal point at the image center
# Create a grid of (u, v) pixel coordinates
u = np.arange(0, width)
v = np.arange(0, height)
uu, vv = np.meshgrid(u, v)
# Convert pixel coordinates to real-world 3D coordinates using the pinhole camera model
Z = depth.flatten()
X = ((uu.flatten() - cx) * Z) / fx
Y = ((vv.flatten() - cy) * Z) / fy
# Stack the coordinates to form vertices (X, Y, Z)
vertices = np.vstack((X, Y, Z)).T
# Normalize RGB colors to [0, 1] for vertex coloring
colors = image.reshape(-1, 3) / 255.0
# Generate faces by connecting adjacent vertices to form triangles
faces = []
for i in range(height - 1):
for j in range(width - 1):
idx = i * width + j
# Triangle 1
faces.append([idx, idx + width, idx + 1])
# Triangle 2
faces.append([idx + 1, idx + width, idx + width + 1])
faces = np.array(faces)
# Create the mesh using Trimesh with vertex colors
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=colors)
# Export the mesh to OBJ files with unique filenames
timestamp = int(time.time())
view_model_path = f'view_model_{timestamp}.obj'
download_model_path = f'download_model_{timestamp}.obj'
mesh.export(view_model_path)
mesh.export(download_model_path)
return view_model_path, download_model_path
@spaces.GPU(duration=20)
def predict_depth(input_image):
"""
Predict the depth map from the input image, generate visualizations and a 3D model.
Args:
input_image (str): Path to the input image file.
Returns:
tuple:
- str: Path to the depth map image.
- str: Focal length in pixels or an error message.
- str: Path to the raw depth data CSV file.
- str: Path to the generated 3D model file for viewing.
- str: Path to the downloadable 3D model file.
"""
temp_file = None
try:
# Resize the input image to a manageable size
temp_file = resize_image(input_image)
# Preprocess the image for depth prediction
result = depth_pro.load_rgb(temp_file)
image = result[0]
f_px = result[-1] # Focal length in pixels
image = transform(image) # Apply preprocessing transforms
image = image.to(device) # Move the image tensor to the selected device
# Run the depth prediction model
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth map in meters
focallength_px = prediction["focallength_px"] # Focal length in pixels
# Convert depth from torch tensor to NumPy array if necessary
if isinstance(depth, torch.Tensor):
depth = depth.cpu().numpy()
# Ensure the depth map is a 2D array
if depth.ndim != 2:
depth = depth.squeeze()
# **Downsample depth map and image to improve processing speed**
downscale_factor = 2 # Factor by which to downscale (e.g., 2 reduces dimensions by half)
depth = depth[::downscale_factor, ::downscale_factor]
# Convert image tensor to CPU and NumPy for slicing
image_np = image.cpu().detach().numpy()[0].transpose(1, 2, 0)
image_ds = image_np[::downscale_factor, ::downscale_factor, :]
# Update focal length based on downscaling
focallength_px = focallength_px / downscale_factor
# **Note:** The downscaled image is saved back to the temporary file for consistency
downscaled_image = Image.fromarray((image_ds * 255).astype(np.uint8))
downscaled_image.save(temp_file)
# No normalization of depth map as it is already in meters
depth_min = np.min(depth)
depth_max = np.max(depth)
depth_normalized = depth # Depth remains in meters
# Create a color map for visualization using matplotlib
plt.figure(figsize=(10, 10))
plt.imshow(depth_normalized, cmap='gist_rainbow')
plt.colorbar(label='Depth [m]')
plt.title(f'Predicted Depth Map - Min: {depth_min:.1f}m, Max: {depth_max:.1f}m')
plt.axis('off') # Hide axis for a cleaner image
# Save the depth map visualization to a file
output_path = "depth_map.png"
plt.savefig(output_path)
plt.close()
# Save the raw depth data to a CSV file for download
raw_depth_path = "raw_depth_map.csv"
np.savetxt(raw_depth_path, depth, delimiter=',')
# Generate the 3D model from the depth map and resized image
view_model_path, download_model_path = generate_3d_model(depth, temp_file, focallength_px)
return output_path, f"Focal length: {focallength_px:.2f} pixels", raw_depth_path, view_model_path, download_model_path
except Exception as e:
# Return error messages in case of failures
return None, f"An error occurred: {str(e)}", None, None, None
finally:
# Clean up by removing the temporary resized image file
if temp_file and os.path.exists(temp_file):
os.remove(temp_file)
# Create the Gradio interface with appropriate input and output components
iface = gr.Interface(
fn=predict_depth,
inputs=gr.Image(type="filepath"),
outputs=[
gr.Image(type="filepath", label="Depth Map"), # Displays the depth map image
gr.Textbox(label="Focal Length or Error Message"), # Shows focal length or error messages
gr.File(label="Download Raw Depth Map (CSV)"), # Allows downloading the raw depth data
gr.Model3D(label="View 3D Model"), # For viewing the 3D model
gr.File(label="Download 3D Model (OBJ)") # For downloading the 3D model
],
title="DepthPro Demo with 3D Visualization",
description=(
"An enhanced demo that creates a textured 3D model from the input image and depth map.\n\n"
"**Instructions:**\n"
"1. Upload an image.\n"
"2. The app will predict the depth map, display it, and provide the focal length.\n"
"3. Download the raw depth data as a CSV file.\n"
"4. View the generated 3D model textured with the original image.\n"
"5. Download the 3D model as an OBJ file if desired."
),
)
# Launch the Gradio interface with sharing enabled
iface.launch(share=True) # share=True allows you to share the interface with others.