Spaces:
Running
Running
File size: 7,739 Bytes
b67fb0b 29cc6e6 b67fb0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import torch
import numpy as np
import re
import soundfile
import utils
import commons
import os
import librosa
from text import text_to_sequence
from mel_processing import spectrogram_torch
from models import SynthesizerTrn
class OpenVoiceBaseClass(object):
def __init__(self,
config_path,
#device='cuda:0'):
device="cpu"):
#if 'cuda' in device:
# assert torch.cuda.is_available()
hps = utils.get_hparams_from_file(config_path)
model = SynthesizerTrn(
len(getattr(hps, 'symbols', [])),
hps.data.filter_length // 2 + 1,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
model.eval()
self.model = model
self.hps = hps
self.device = device
def load_ckpt(self, ckpt_path):
checkpoint_dict = torch.load(ckpt_path, map_location=torch.device('cpu'))
a, b = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
print("Loaded checkpoint '{}'".format(ckpt_path))
print('missing/unexpected keys:', a, b)
class BaseSpeakerTTS(OpenVoiceBaseClass):
language_marks = {
"english": "EN",
"chinese": "ZH",
}
@staticmethod
def get_text(text, hps, is_symbol):
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
@staticmethod
def audio_numpy_concat(segment_data_list, sr, speed=1.):
audio_segments = []
for segment_data in segment_data_list:
audio_segments += segment_data.reshape(-1).tolist()
audio_segments += [0] * int((sr * 0.05)/speed)
audio_segments = np.array(audio_segments).astype(np.float32)
return audio_segments
@staticmethod
def split_sentences_into_pieces(text, language_str):
texts = utils.split_sentence(text, language_str=language_str)
print(" > Text splitted to sentences.")
print('\n'.join(texts))
print(" > ===========================")
return texts
def tts(self, text, output_path, speaker, language='English', speed=1.0):
mark = self.language_marks.get(language.lower(), None)
assert mark is not None, f"language {language} is not supported"
texts = self.split_sentences_into_pieces(text, mark)
audio_list = []
for t in texts:
t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t)
t = f'[{mark}]{t}[{mark}]'
stn_tst = self.get_text(t, self.hps, False)
device = self.device
speaker_id = self.hps.speakers[speaker]
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
sid = torch.LongTensor([speaker_id]).to(device)
audio = self.model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.6,
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
audio_list.append(audio)
audio = self.audio_numpy_concat(audio_list, sr=self.hps.data.sampling_rate, speed=speed)
if output_path is None:
return audio
else:
soundfile.write(output_path, audio, self.hps.data.sampling_rate)
class ToneColorConverter(OpenVoiceBaseClass):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if kwargs.get('enable_watermark', True):
import wavmark
self.watermark_model = wavmark.load_model().to(self.device)
else:
self.watermark_model = None
def extract_se(self, ref_wav_list, se_save_path=None):
if isinstance(ref_wav_list, str):
ref_wav_list = [ref_wav_list]
device = self.device
hps = self.hps
gs = []
for fname in ref_wav_list:
audio_ref, sr = librosa.load(fname, sr=hps.data.sampling_rate)
y = torch.FloatTensor(audio_ref)
y = y.to(device)
y = y.unsqueeze(0)
y = spectrogram_torch(y, hps.data.filter_length,
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
center=False).to(device)
with torch.no_grad():
g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
gs.append(g.detach())
gs = torch.stack(gs).mean(0)
if se_save_path is not None:
os.makedirs(os.path.dirname(se_save_path), exist_ok=True)
torch.save(gs.cpu(), se_save_path)
return gs
def convert(self, audio_src_path, src_se, tgt_se, output_path=None, tau=0.3, message="@Hilley-MyShell"):
hps = self.hps
# load audio
audio, sample_rate = librosa.load(audio_src_path, sr=hps.data.sampling_rate)
audio = torch.tensor(audio).float()
with torch.no_grad():
y = torch.FloatTensor(audio).to(self.device)
y = y.unsqueeze(0)
spec = spectrogram_torch(y, hps.data.filter_length,
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
center=False).to(self.device)
spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.device)
audio = self.model.voice_conversion(spec, spec_lengths, sid_src=src_se, sid_tgt=tgt_se, tau=tau)[0][
0, 0].data.cpu().float().numpy()
audio = self.add_watermark(audio, message)
if output_path is None:
return audio
else:
soundfile.write(output_path, audio, hps.data.sampling_rate)
def add_watermark(self, audio, message):
if self.watermark_model is None:
return audio
device = self.device
bits = utils.string_to_bits(message).reshape(-1)
n_repeat = len(bits) // 32
K = 16000
coeff = 2
for n in range(n_repeat):
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
if len(trunck) != K:
print('Audio too short, fail to add watermark')
break
message_npy = bits[n * 32: (n + 1) * 32]
with torch.no_grad():
signal = torch.FloatTensor(trunck).to(device)[None]
message_tensor = torch.FloatTensor(message_npy).to(device)[None]
signal_wmd_tensor = self.watermark_model.encode(signal, message_tensor)
signal_wmd_npy = signal_wmd_tensor.detach().cpu().squeeze()
audio[(coeff * n) * K: (coeff * n + 1) * K] = signal_wmd_npy
return audio
def detect_watermark(self, audio, n_repeat):
bits = []
K = 16000
coeff = 2
for n in range(n_repeat):
trunck = audio[(coeff * n) * K: (coeff * n + 1) * K]
if len(trunck) != K:
print('Audio too short, fail to detect watermark')
return 'Fail'
with torch.no_grad():
signal = torch.FloatTensor(trunck).to(self.device).unsqueeze(0)
message_decoded_npy = (self.watermark_model.decode(signal) >= 0.5).int().detach().cpu().numpy().squeeze()
bits.append(message_decoded_npy)
bits = np.stack(bits).reshape(-1, 8)
message = utils.bits_to_string(bits)
return message
|