File size: 4,509 Bytes
f971083 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
from __future__ import annotations
import os
import pathlib
import shlex
import shutil
import subprocess
import gradio as gr
import PIL.Image
import torch
os.environ['PYTHONPATH'] = f'custom-diffusion:{os.getenv("PYTHONPATH", "")}'
def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
w, h = image.size
if w == h:
return image
elif w > h:
new_image = PIL.Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = PIL.Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
class Trainer:
def __init__(self):
self.is_running = False
self.is_running_message = 'Another training is in progress.'
self.output_dir = pathlib.Path('results')
self.instance_data_dir = self.output_dir / 'training_data'
self.class_data_dir = self.output_dir / 'regularization_data'
def check_if_running(self) -> dict:
if self.is_running:
return gr.update(value=self.is_running_message)
else:
return gr.update(value='No training is running.')
def cleanup_dirs(self) -> None:
shutil.rmtree(self.output_dir, ignore_errors=True)
def prepare_dataset(self, concept_images: list, resolution: int) -> None:
self.instance_data_dir.mkdir(parents=True)
for i, temp_path in enumerate(concept_images):
image = PIL.Image.open(temp_path.name)
image = pad_image(image)
image = image.resize((resolution, resolution))
image = image.convert('RGB')
out_path = self.instance_data_dir / f'{i:03d}.jpg'
image.save(out_path, format='JPEG', quality=100)
def run(
self,
base_model: str,
resolution_s: str,
concept_images: list | None,
concept_prompt: str,
class_prompt: str,
n_steps: int,
learning_rate: float,
train_text_encoder: bool,
modifier_token: bool,
gradient_accumulation: int,
batch_size: int,
use_8bit_adam: bool,
gradient_checkpointing: bool,
gen_images: bool,
) -> tuple[dict, list[pathlib.Path]]:
if not torch.cuda.is_available():
raise gr.Error('CUDA is not available.')
if self.is_running:
return gr.update(value=self.is_running_message), []
if concept_images is None:
raise gr.Error('You need to upload images.')
if not concept_prompt:
raise gr.Error('The concept prompt is missing.')
resolution = int(resolution_s)
self.cleanup_dirs()
self.prepare_dataset(concept_images, resolution)
command = f'''
accelerate launch custom-diffusion/src/diffuser_training.py \
--pretrained_model_name_or_path={base_model} \
--instance_data_dir={self.instance_data_dir} \
--output_dir={self.output_dir} \
--instance_prompt="{concept_prompt}" \
--class_data_dir={self.class_data_dir} \
--with_prior_preservation --prior_loss_weight=1.0 \
--class_prompt="{class_prompt}" \
--resolution={resolution} \
--train_batch_size={batch_size} \
--gradient_accumulation_steps={gradient_accumulation} \
--learning_rate={learning_rate} \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps={n_steps} \
--num_class_images=200 \
--scale_lr
'''
if modifier_token:
command += ' --modifier_token "<new1>"'
if not gen_images:
command += ' --real_prior'
if use_8bit_adam:
command += ' --use_8bit_adam'
if train_text_encoder:
command += f' --train_text_encoder'
if gradient_checkpointing:
command += f' --gradient_checkpointing'
with open(self.output_dir / 'train.sh', 'w') as f:
command_s = ' '.join(command.split())
f.write(command_s)
self.is_running = True
res = subprocess.run(shlex.split(command))
self.is_running = False
if res.returncode == 0:
result_message = 'Training Completed!'
else:
result_message = 'Training Failed!'
weight_paths = sorted(self.output_dir.glob('*.bin'))
return gr.update(value=result_message), weight_paths
|