File size: 15,177 Bytes
f971083
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/env python
"""Demo app for https://github.com/adobe-research/custom-diffusion.

The code in this repo is partly adapted from the following repository:
https://huggingface.co/spaces/hysts/LoRA-SD-training
"""

from __future__ import annotations
import sys
import os
import pathlib

import gradio as gr
import torch

from inference import InferencePipeline
from trainer import Trainer
from uploader import upload

TITLE = '# Custom Diffusion + StableDiffusion Training UI'
DESCRIPTION = '''This is a demo for [https://github.com/adobe-research/custom-diffusion](https://github.com/adobe-research/custom-diffusion).
It is recommended to upgrade to GPU in Settings after duplicating this space to use it.
<a href="https://huggingface.co/spaces/nupurkmr9/custom-diffusion?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
'''
DETAILDESCRIPTION='''
Custom Diffusion allows you to fine-tune text-to-image diffusion models, such as Stable Diffusion, given a few images of a new concept (~4-20). 
We fine-tune only a subset of model parameters, namely key and value projection matrices, in the cross-attention layers and the modifier token used to represent the object. 
This also reduces the extra storage for each additional concept to 75MB.
Our method further allows you to use a combination of concepts. Demo for multiple concepts will be added soon.
<center>
<img src="https://huggingface.co/spaces/nupurkmr9/custom-diffusion/resolve/main/method.jpg" width="600" align="center" >
</center>
'''

ORIGINAL_SPACE_ID = 'nupurkmr9/custom-diffusion'
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.

<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
    SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'

else:
    SETTINGS = 'Settings'
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
'''

os.system("git clone https://github.com/adobe-research/custom-diffusion")
sys.path.append("custom-diffusion")

def show_warning(warning_text: str) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Box():
            gr.Markdown(warning_text)
    return demo


def update_output_files() -> dict:
    paths = sorted(pathlib.Path('results').glob('*.pt'))
    paths = [path.as_posix() for path in paths]  # type: ignore
    return gr.update(value=paths or None)


def create_training_demo(trainer: Trainer,
                         pipe: InferencePipeline) -> gr.Blocks:
    with gr.Blocks() as demo:
        base_model = gr.Dropdown(
            choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
            value='CompVis/stable-diffusion-v1-4',
            label='Base Model',
            visible=True)
        resolution = gr.Dropdown(choices=['512', '768'],
                                 value='512',
                                 label='Resolution',
                                 visible=True)

        with gr.Row():
            with gr.Box():
                gr.Markdown('Training Data')
                concept_images = gr.Files(label='Images for your concept')
                with gr.Row():
                    class_prompt = gr.Textbox(label='Class Prompt',
                                            max_lines=1, placeholder='Example: "cat"')
                    with gr.Column():
                        modifier_token = gr.Checkbox(label='modifier token',
                                                    value=True)
                        train_text_encoder = gr.Checkbox(label='Train Text Encoder',
                                                 value=False)
                concept_prompt = gr.Textbox(label='Concept Prompt',
                                                max_lines=1, placeholder='Example: "photo of a \<new1\> cat"')
                gr.Markdown('''
                    - We use "\<new1\>" modifier token in front of the concept, e.g., "\<new1\> cat". By default modifier_token is enabled.
                    - If "Train Text Encoder", disable "modifier token" and use any unique text to describe the concept e.g. "ktn cat". 
                    - For a new concept an e.g. concept prompt is "photo of a \<new1\> cat" and "cat" for class prompt.
                    - For a style concept, use "painting in the style of \<new1\> art" for concept prompt and "art" for class prompt.
                    - Class prompt should be the object category.
                    ''')
            with gr.Box():
                gr.Markdown('Training Parameters')
                num_training_steps = gr.Number(
                    label='Number of Training Steps', value=1000, precision=0)
                learning_rate = gr.Number(label='Learning Rate', value=0.00001)
                batch_size = gr.Number(
                    label='batch_size', value=1, precision=0)
                with gr.Row():
                    use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True) 
                    gradient_checkpointing = gr.Checkbox(label='Enable gradient checkpointing', value=False)
                with gr.Accordion('Other Parameters', open=False):
                    gradient_accumulation = gr.Number(
                        label='Number of Gradient Accumulation',
                        value=1,
                        precision=0)
                    gen_images = gr.Checkbox(label='Generated images as regularization',
                                                 value=False)
                gr.Markdown('''
                    - It will take about ~10 minutes to train for 1000 steps and ~21GB on a 3090 GPU. 
                    - Our results in the paper are trained with batch-size 4 (8 including class regularization samples).
                    - Enable gradient checkpointing for lower memory requirements (~14GB) at the expense of slower backward pass.
                    - Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
                    ''')

        run_button = gr.Button('Start Training')
        with gr.Box():
            with gr.Row():
                check_status_button = gr.Button('Check Training Status')
                with gr.Column():
                    with gr.Box():
                        gr.Markdown('Message')
                        training_status = gr.Markdown()
                    output_files = gr.Files(label='Trained Weight Files')

        run_button.click(fn=pipe.clear,
                            inputs=None,
                            outputs=None,)
        run_button.click(fn=trainer.run,
                         inputs=[
                             base_model,
                             resolution,
                             concept_images,
                             concept_prompt,
                             class_prompt,
                             num_training_steps,
                             learning_rate,
                             train_text_encoder,
                             modifier_token,
                             gradient_accumulation,
                             batch_size,
                             use_8bit_adam,
                             gradient_checkpointing,
                             gen_images
                         ],
                         outputs=[
                             training_status,
                             output_files,
                         ],
                         queue=False)
        check_status_button.click(fn=trainer.check_if_running,
                                  inputs=None,
                                  outputs=training_status,
                                  queue=False)
        check_status_button.click(fn=update_output_files,
                                  inputs=None,
                                  outputs=output_files,
                                  queue=False)
    return demo


def find_weight_files() -> list[str]:
    curr_dir = pathlib.Path(__file__).parent
    paths = sorted(curr_dir.rglob('*.bin'))
    paths = [path for path in paths if '.lfs' not in path.name]
    return [path.relative_to(curr_dir).as_posix() for path in paths]


def reload_custom_diffusion_weight_list() -> dict:
    return gr.update(choices=find_weight_files())


def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                base_model = gr.Dropdown(
                    choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
                    value='CompVis/stable-diffusion-v1-4',
                    label='Base Model',
                    visible=True)
                resolution = gr.Dropdown(choices=[512, 768],
                                 value=512,
                                 label='Resolution',
                                 visible=True)
                reload_button = gr.Button('Reload Weight List')
                weight_name = gr.Dropdown(choices=find_weight_files(),
                                               value='custom-diffusion-models/cat.bin',
                                               label='Custom Diffusion Weight File')
                prompt = gr.Textbox(
                    label='Prompt',
                    max_lines=1,
                    placeholder='Example: "\<new1\> cat in outer space"')
                seed = gr.Slider(label='Seed',
                                 minimum=0,
                                 maximum=100000,
                                 step=1,
                                 value=42)
                with gr.Accordion('Other Parameters', open=False):
                    num_steps = gr.Slider(label='Number of Steps',
                                          minimum=0,
                                          maximum=500,
                                          step=1,
                                          value=200)
                    guidance_scale = gr.Slider(label='CFG Scale',
                                               minimum=0,
                                               maximum=50,
                                               step=0.1,
                                               value=6)
                    eta = gr.Slider(label='DDIM eta',
                                               minimum=0,
                                               maximum=1.,
                                               step=0.1,
                                               value=1.)
                    batch_size = gr.Slider(label='Batch Size',
                                               minimum=0,
                                               maximum=10.,
                                               step=1,
                                               value=2)

                run_button = gr.Button('Generate')

                gr.Markdown('''
                - Models with names starting with "custom-diffusion-models/" are the pretrained models provided in the [original repo](https://github.com/adobe-research/custom-diffusion), and the ones with names starting with "results/delta.bin" are your trained models.
                - After training, you can press "Reload Weight List" button to load your trained model names.
                - Change default batch-size and steps for faster sampling. 
                ''')
            with gr.Column():
                result = gr.Image(label='Result')

        reload_button.click(fn=reload_custom_diffusion_weight_list,
                            inputs=None,
                            outputs=weight_name)
        prompt.submit(fn=pipe.run,
                      inputs=[
                          base_model,
                          weight_name,
                          prompt,
                          seed,
                          num_steps,
                          guidance_scale,
                          eta,
                          batch_size,
                          resolution
                      ],
                      outputs=result,
                      queue=False)
        run_button.click(fn=pipe.run,
                         inputs=[
                             base_model,
                             weight_name,
                             prompt,
                             seed,
                             num_steps,
                             guidance_scale,
                             eta,
                             batch_size,
                             resolution
                         ],
                         outputs=result,
                         queue=False)
    return demo


def create_upload_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        model_name = gr.Textbox(label='Model Name')
        hf_token = gr.Textbox(
            label='Hugging Face Token (with write permission)')
        upload_button = gr.Button('Upload')
        with gr.Box():
            gr.Markdown('Message')
            result = gr.Markdown()
        gr.Markdown('''
            - You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
            - You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
            ''')

    upload_button.click(fn=upload,
                        inputs=[model_name, hf_token],
                        outputs=result)

    return demo


pipe = InferencePipeline()
trainer = Trainer()

with gr.Blocks(css='style.css') as demo:
    if os.getenv('IS_SHARED_UI'):
        show_warning(SHARED_UI_WARNING)
    if not torch.cuda.is_available():
        show_warning(CUDA_NOT_AVAILABLE_WARNING)

    gr.Markdown(TITLE)
    gr.Markdown(DESCRIPTION)
    gr.Markdown(DETAILDESCRIPTION)

    with gr.Tabs():
        with gr.TabItem('Train'):
            create_training_demo(trainer, pipe)
        with gr.TabItem('Test'):
            create_inference_demo(pipe)
        with gr.TabItem('Upload'):
            create_upload_demo()

demo.queue(default_enabled=False).launch(share=False)