import torch import torch.nn as nn def dwt_init(x): x01 = x[:, :, 0::2, :] / 2 x02 = x[:, :, 1::2, :] / 2 x1 = x01[:, :, :, 0::2] x2 = x02[:, :, :, 0::2] x3 = x01[:, :, :, 1::2] x4 = x02[:, :, :, 1::2] x_LL = x1 + x2 + x3 + x4 x_HL = -x1 - x2 + x3 + x4 x_LH = -x1 + x2 - x3 + x4 x_HH = x1 - x2 - x3 + x4 # print(x_HH[:, 0, :, :]) return torch.cat((x_LL, x_HL, x_LH, x_HH), 1) def iwt_init(x): r = 2 in_batch, in_channel, in_height, in_width = x.size() out_batch, out_channel, out_height, out_width = in_batch, int(in_channel / (r ** 2)), r * in_height, r * in_width x1 = x[:, 0:out_channel, :, :] / 2 x2 = x[:, out_channel:out_channel * 2, :, :] / 2 x3 = x[:, out_channel * 2:out_channel * 3, :, :] / 2 x4 = x[:, out_channel * 3:out_channel * 4, :, :] / 2 h = torch.zeros([out_batch, out_channel, out_height, out_width])#.cuda() # h[:, :, 0::2, 0::2] = x1 - x2 - x3 + x4 h[:, :, 1::2, 0::2] = x1 - x2 + x3 - x4 h[:, :, 0::2, 1::2] = x1 + x2 - x3 - x4 h[:, :, 1::2, 1::2] = x1 + x2 + x3 + x4 return h class DWT(nn.Module): def __init__(self): super(DWT, self).__init__() self.requires_grad = True def forward(self, x): return dwt_init(x) class IWT(nn.Module): def __init__(self): super(IWT, self).__init__() self.requires_grad = True def forward(self, x): return iwt_init(x)