import os import random from threading import Thread from typing import Iterable import torch from huggingface_hub import HfApi from datasets import load_dataset from transformers import T5Tokenizer, T5ForConditionalGeneration from transformers import AutoTokenizer, AutoModelForCausalLM TOKEN = os.environ.get("HF_TOKEN", None) type2dataset = { "re2text-easy": load_dataset('3B-Group/ConvRe', "en-re2text", token=TOKEN, split="prompt1"), "re2text-hard": load_dataset('3B-Group/ConvRe', "en-re2text", token=TOKEN, split="prompt4"), "text2re-easy": load_dataset('3B-Group/ConvRe', "en-text2re", token=TOKEN, split="prompt1"), "text2re-hard": load_dataset('3B-Group/ConvRe', "en-text2re", token=TOKEN, split="prompt3") } model_id = "meta-llama/Llama-2-7b-chat-hf" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16) # type2dataset = {} def generate(): return "1" def random_examples(dataset_key) -> str: # target_dataset = type2dataset[f"{task.lower()}-{type.lower()}"] target_dataset = type2dataset[dataset_key] idx = random.randint(0, len(target_dataset) - 1) item = target_dataset[idx] return item['query']