import gradio as gr import os from util.instantmesh import generate_mvs, make3d, preprocess, check_input_image from util.text_img import generate_txttoimg, check_prompt, generate_imgtoimg, update_image _CITE_ = r""" ```bibtex @article{xu2024instantmesh, title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models}, author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying}, journal={arXiv preprint arXiv:2404.07191}, year={2024} } ``` """ theme = gr.themes.Soft( primary_hue="orange", secondary_hue="gray", neutral_hue="slate", font=['Montserrat', gr.themes.GoogleFont('ui-sans-serif'), 'system-ui', 'sans-serif'], ) with gr.Blocks(theme=theme) as GenDemo: gen_image_var = gr.State() with gr.Tab("Image to Image Generator"): with gr.Row(variant="panel"): with gr.Column(): prompt = gr.Textbox(label="Enter a discription of a shoe") image = gr.Image(label="Enter an image of a shoe, that you want to use as a reference", type='pil') strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.5, step=0.1) gr.Examples( examples=[ os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) ], inputs=[image], label="Examples", cache_examples=False, ) with gr.Column(): button_img = gr.Button("Generate Image", elem_id="generateIm", variant="primary") gen_image = gr.Image(label="Generated Image", image_mode="RGBA", type='pil', show_download_button=True, show_label=False) button_img.click(check_prompt, inputs=[prompt]).success(generate_imgtoimg, inputs=[prompt, image, strength], outputs=[gen_image]).success(update_image, inputs=[gen_image], outputs=[gen_image_var]) with gr.Tab("Text to Image Generator"): with gr.Row(variant="panel"): with gr.Column(): prompt = gr.Textbox(label="Enter a discription of a shoe") select = gr.Dropdown(label="Select a model", choices=["Depth","Normal"]) controlNet_image = gr.Image(label="Enter an image of a shoe, that you want to use as a reference", type='pil') gr.Examples( examples=[ os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) ], inputs=[controlNet_image], label="Examples", cache_examples=False, ) with gr.Column(): button_txt = gr.Button("Generate Image", elem_id="generateIm", variant="primary") gen_image = gr.Image(label="Generated Image", image_mode="RGBA", type='pil', show_download_button=True, show_label=False) button_txt.click(check_prompt, inputs=[prompt]).success(generate_txttoimg, inputs=[prompt, controlNet_image, select], outputs=[gen_image]).success(update_image, inputs=[gen_image], outputs=[gen_image_var]) with gr.Tab("Image to 3D Model Generator"): with gr.Row(variant="panel"): with gr.Column(): with gr.Row(): # input_image = gr.Image( # label="Input Image", # image_mode="RGBA", # type="pil", # interactive=True # ) processed_image = gr.Image( label="Processed Image", image_mode="RGBA", #width=256, #height=256, type="pil", interactive=False ) with gr.Row(): with gr.Group(): do_remove_background = gr.Checkbox( label="Remove Background", value=True ) sample_seed = gr.Number(value=42, label="Seed Value", precision=0) sample_steps = gr.Slider( label="Sample Steps", minimum=30, maximum=75, value=75, step=5 ) with gr.Row(): submit = gr.Button("Generate", elem_id="generate", variant="primary") with gr.Column(): with gr.Row(): with gr.Column(): mv_show_images = gr.Image( label="Generated Multi-views", type="pil", width=379, interactive=False ) with gr.Row(): with gr.Tab("glb"): output_model_glb = gr.Model3D( label="Output Model (GLB Format)", interactive=False, ) with gr.Tab("obj"): output_model_obj = gr.Model3D( label="Output Model (OBJ Format)", interactive=False, ) with gr.Row(): gr.Markdown('''Try a different seed value if the result is unsatisfying (Default: 42).''') gr.Markdown(_CITE_) mv_images = gr.State() submit.click(fn=check_input_image, inputs=[gen_image_var]).success( fn=preprocess, inputs=[gen_image_var, do_remove_background], outputs=[processed_image], ).success( fn=generate_mvs, inputs=[processed_image, sample_steps, sample_seed], outputs=[mv_images, mv_show_images] ).success( fn=make3d, inputs=[mv_images], outputs=[output_model_obj, output_model_glb] ) GenDemo.launch()