MaxMilan1
commited on
Commit
·
f75e089
1
Parent(s):
49db696
changes
Browse files- app.py +2 -261
- util/instantmesh.py +210 -0
app.py
CHANGED
@@ -1,256 +1,7 @@
|
|
1 |
-
import spaces
|
2 |
-
|
3 |
-
import os
|
4 |
-
import imageio
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import rembg
|
8 |
-
from PIL import Image
|
9 |
-
from torchvision.transforms import v2
|
10 |
-
from pytorch_lightning import seed_everything
|
11 |
-
from omegaconf import OmegaConf
|
12 |
-
from einops import rearrange, repeat
|
13 |
-
from tqdm import tqdm
|
14 |
-
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
15 |
-
|
16 |
-
from src.utils.train_util import instantiate_from_config
|
17 |
-
from src.utils.camera_util import (
|
18 |
-
FOV_to_intrinsics,
|
19 |
-
get_zero123plus_input_cameras,
|
20 |
-
get_circular_camera_poses,
|
21 |
-
)
|
22 |
-
from src.utils.mesh_util import save_obj
|
23 |
-
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
24 |
-
|
25 |
-
import tempfile
|
26 |
-
from functools import partial
|
27 |
-
|
28 |
-
from huggingface_hub import hf_hub_download
|
29 |
-
|
30 |
import gradio as gr
|
|
|
31 |
|
32 |
-
|
33 |
-
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
34 |
-
"""
|
35 |
-
Get the rendering camera parameters.
|
36 |
-
"""
|
37 |
-
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
38 |
-
if is_flexicubes:
|
39 |
-
cameras = torch.linalg.inv(c2ws)
|
40 |
-
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
41 |
-
else:
|
42 |
-
extrinsics = c2ws.flatten(-2)
|
43 |
-
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
|
44 |
-
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
45 |
-
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
46 |
-
return cameras
|
47 |
-
|
48 |
-
|
49 |
-
def images_to_video(images, output_path, fps=30):
|
50 |
-
# images: (N, C, H, W)
|
51 |
-
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
52 |
-
frames = []
|
53 |
-
for i in range(images.shape[0]):
|
54 |
-
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
|
55 |
-
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
|
56 |
-
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
|
57 |
-
assert frame.min() >= 0 and frame.max() <= 255, \
|
58 |
-
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
|
59 |
-
frames.append(frame)
|
60 |
-
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
|
61 |
-
|
62 |
-
|
63 |
-
###############################################################################
|
64 |
-
# Configuration.
|
65 |
-
###############################################################################
|
66 |
-
|
67 |
-
import shutil
|
68 |
-
|
69 |
-
def find_cuda():
|
70 |
-
# Check if CUDA_HOME or CUDA_PATH environment variables are set
|
71 |
-
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
72 |
-
|
73 |
-
if cuda_home and os.path.exists(cuda_home):
|
74 |
-
return cuda_home
|
75 |
-
|
76 |
-
# Search for the nvcc executable in the system's PATH
|
77 |
-
nvcc_path = shutil.which('nvcc')
|
78 |
-
|
79 |
-
if nvcc_path:
|
80 |
-
# Remove the 'bin/nvcc' part to get the CUDA installation path
|
81 |
-
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
|
82 |
-
return cuda_path
|
83 |
-
|
84 |
-
return None
|
85 |
-
|
86 |
-
cuda_path = find_cuda()
|
87 |
-
|
88 |
-
if cuda_path:
|
89 |
-
print(f"CUDA installation found at: {cuda_path}")
|
90 |
-
else:
|
91 |
-
print("CUDA installation not found")
|
92 |
-
|
93 |
-
config_path = 'configs/instant-mesh-large.yaml'
|
94 |
-
config = OmegaConf.load(config_path)
|
95 |
-
config_name = os.path.basename(config_path).replace('.yaml', '')
|
96 |
-
model_config = config.model_config
|
97 |
-
infer_config = config.infer_config
|
98 |
-
|
99 |
-
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
|
100 |
-
|
101 |
-
device = torch.device('cuda')
|
102 |
-
|
103 |
-
# load diffusion model
|
104 |
-
print('Loading diffusion model ...')
|
105 |
-
pipeline = DiffusionPipeline.from_pretrained(
|
106 |
-
"sudo-ai/zero123plus-v1.2",
|
107 |
-
custom_pipeline="zero123plus",
|
108 |
-
torch_dtype=torch.float16,
|
109 |
-
)
|
110 |
-
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
111 |
-
pipeline.scheduler.config, timestep_spacing='trailing'
|
112 |
-
)
|
113 |
-
|
114 |
-
# load custom white-background UNet
|
115 |
-
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
|
116 |
-
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
117 |
-
pipeline.unet.load_state_dict(state_dict, strict=True)
|
118 |
-
|
119 |
-
pipeline = pipeline.to(device)
|
120 |
-
|
121 |
-
# load reconstruction model
|
122 |
-
print('Loading reconstruction model ...')
|
123 |
-
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
124 |
-
model = instantiate_from_config(model_config)
|
125 |
-
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
126 |
-
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
127 |
-
model.load_state_dict(state_dict, strict=True)
|
128 |
-
|
129 |
-
model = model.to(device)
|
130 |
-
|
131 |
-
print('Loading Finished!')
|
132 |
-
|
133 |
-
|
134 |
-
def check_input_image(input_image):
|
135 |
-
if input_image is None:
|
136 |
-
raise gr.Error("No image uploaded!")
|
137 |
-
|
138 |
-
|
139 |
-
def preprocess(input_image, do_remove_background):
|
140 |
-
|
141 |
-
rembg_session = rembg.new_session() if do_remove_background else None
|
142 |
-
|
143 |
-
if do_remove_background:
|
144 |
-
input_image = remove_background(input_image, rembg_session)
|
145 |
-
input_image = resize_foreground(input_image, 0.85)
|
146 |
-
|
147 |
-
return input_image
|
148 |
-
|
149 |
-
|
150 |
-
@spaces.GPU
|
151 |
-
def generate_mvs(input_image, sample_steps, sample_seed):
|
152 |
-
|
153 |
-
seed_everything(sample_seed)
|
154 |
-
|
155 |
-
# sampling
|
156 |
-
z123_image = pipeline(
|
157 |
-
input_image,
|
158 |
-
num_inference_steps=sample_steps
|
159 |
-
).images[0]
|
160 |
-
|
161 |
-
show_image = np.asarray(z123_image, dtype=np.uint8)
|
162 |
-
show_image = torch.from_numpy(show_image) # (960, 640, 3)
|
163 |
-
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
164 |
-
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
165 |
-
show_image = Image.fromarray(show_image.numpy())
|
166 |
-
|
167 |
-
return z123_image, show_image
|
168 |
-
|
169 |
-
|
170 |
-
@spaces.GPU
|
171 |
-
def make3d(images):
|
172 |
-
|
173 |
-
global model
|
174 |
-
if IS_FLEXICUBES:
|
175 |
-
model.init_flexicubes_geometry(device, use_renderer=False)
|
176 |
-
model = model.eval()
|
177 |
-
|
178 |
-
images = np.asarray(images, dtype=np.float32) / 255.0
|
179 |
-
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
|
180 |
-
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
|
181 |
-
|
182 |
-
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
183 |
-
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
184 |
-
|
185 |
-
images = images.unsqueeze(0).to(device)
|
186 |
-
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
187 |
-
|
188 |
-
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
189 |
-
print(mesh_fpath)
|
190 |
-
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
191 |
-
mesh_dirname = os.path.dirname(mesh_fpath)
|
192 |
-
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
|
193 |
-
|
194 |
-
with torch.no_grad():
|
195 |
-
# get triplane
|
196 |
-
planes = model.forward_planes(images, input_cameras)
|
197 |
-
|
198 |
-
# # get video
|
199 |
-
# chunk_size = 20 if IS_FLEXICUBES else 1
|
200 |
-
# render_size = 384
|
201 |
-
|
202 |
-
# frames = []
|
203 |
-
# for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
204 |
-
# if IS_FLEXICUBES:
|
205 |
-
# frame = model.forward_geometry(
|
206 |
-
# planes,
|
207 |
-
# render_cameras[:, i:i+chunk_size],
|
208 |
-
# render_size=render_size,
|
209 |
-
# )['img']
|
210 |
-
# else:
|
211 |
-
# frame = model.synthesizer(
|
212 |
-
# planes,
|
213 |
-
# cameras=render_cameras[:, i:i+chunk_size],
|
214 |
-
# render_size=render_size,
|
215 |
-
# )['images_rgb']
|
216 |
-
# frames.append(frame)
|
217 |
-
# frames = torch.cat(frames, dim=1)
|
218 |
-
|
219 |
-
# images_to_video(
|
220 |
-
# frames[0],
|
221 |
-
# video_fpath,
|
222 |
-
# fps=30,
|
223 |
-
# )
|
224 |
-
|
225 |
-
# print(f"Video saved to {video_fpath}")
|
226 |
-
|
227 |
-
# get mesh
|
228 |
-
mesh_out = model.extract_mesh(
|
229 |
-
planes,
|
230 |
-
use_texture_map=False,
|
231 |
-
**infer_config,
|
232 |
-
)
|
233 |
-
|
234 |
-
vertices, faces, vertex_colors = mesh_out
|
235 |
-
vertices = vertices[:, [1, 2, 0]]
|
236 |
-
vertices[:, -1] *= -1
|
237 |
-
faces = faces[:, [2, 1, 0]]
|
238 |
-
|
239 |
-
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
240 |
-
|
241 |
-
print(f"Mesh saved to {mesh_fpath}")
|
242 |
-
|
243 |
-
return mesh_fpath
|
244 |
-
|
245 |
-
|
246 |
-
_HEADER_ = '''
|
247 |
-
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
|
248 |
-
'''
|
249 |
-
|
250 |
-
_LINKS_ = '''
|
251 |
-
<h3>Code is available at <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>GitHub</a></h3>
|
252 |
-
<h3>Report is available at <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a></h3>
|
253 |
-
'''
|
254 |
|
255 |
_CITE_ = r"""
|
256 |
```bibtex
|
@@ -265,7 +16,6 @@ _CITE_ = r"""
|
|
265 |
|
266 |
|
267 |
with gr.Blocks() as demo:
|
268 |
-
gr.Markdown(_HEADER_)
|
269 |
with gr.Row(variant="panel"):
|
270 |
with gr.Column():
|
271 |
with gr.Row():
|
@@ -327,14 +77,6 @@ with gr.Blocks() as demo:
|
|
327 |
interactive=False
|
328 |
)
|
329 |
|
330 |
-
# with gr.Column():
|
331 |
-
# output_video = gr.Video(
|
332 |
-
# label="video", format="mp4",
|
333 |
-
# width=379,
|
334 |
-
# autoplay=True,
|
335 |
-
# interactive=False
|
336 |
-
# )
|
337 |
-
|
338 |
with gr.Row():
|
339 |
output_model_obj = gr.Model3D(
|
340 |
label="Output Model (OBJ Format)",
|
@@ -344,7 +86,6 @@ with gr.Blocks() as demo:
|
|
344 |
with gr.Row():
|
345 |
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
346 |
|
347 |
-
gr.Markdown(_LINKS_)
|
348 |
gr.Markdown(_CITE_)
|
349 |
|
350 |
mv_images = gr.State()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
|
4 |
+
from util.instantmesh import generate_mvs, make3d, preprocess, check_input_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
_CITE_ = r"""
|
7 |
```bibtex
|
|
|
16 |
|
17 |
|
18 |
with gr.Blocks() as demo:
|
|
|
19 |
with gr.Row(variant="panel"):
|
20 |
with gr.Column():
|
21 |
with gr.Row():
|
|
|
77 |
interactive=False
|
78 |
)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
with gr.Row():
|
81 |
output_model_obj = gr.Model3D(
|
82 |
label="Output Model (OBJ Format)",
|
|
|
86 |
with gr.Row():
|
87 |
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
88 |
|
|
|
89 |
gr.Markdown(_CITE_)
|
90 |
|
91 |
mv_images = gr.State()
|
util/instantmesh.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
|
3 |
+
import os
|
4 |
+
import imageio
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import rembg
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import v2
|
10 |
+
from pytorch_lightning import seed_everything
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
from tqdm import tqdm
|
14 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
15 |
+
|
16 |
+
from src.utils.train_util import instantiate_from_config
|
17 |
+
from src.utils.camera_util import (
|
18 |
+
FOV_to_intrinsics,
|
19 |
+
get_zero123plus_input_cameras,
|
20 |
+
get_circular_camera_poses,
|
21 |
+
)
|
22 |
+
from src.utils.mesh_util import save_obj
|
23 |
+
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
24 |
+
|
25 |
+
import tempfile
|
26 |
+
from functools import partial
|
27 |
+
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
|
30 |
+
import gradio as gr
|
31 |
+
|
32 |
+
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
33 |
+
"""
|
34 |
+
Get the rendering camera parameters.
|
35 |
+
"""
|
36 |
+
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
37 |
+
if is_flexicubes:
|
38 |
+
cameras = torch.linalg.inv(c2ws)
|
39 |
+
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
40 |
+
else:
|
41 |
+
extrinsics = c2ws.flatten(-2)
|
42 |
+
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
|
43 |
+
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
44 |
+
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
45 |
+
return cameras
|
46 |
+
|
47 |
+
|
48 |
+
def images_to_video(images, output_path, fps=30):
|
49 |
+
# images: (N, C, H, W)
|
50 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
51 |
+
frames = []
|
52 |
+
for i in range(images.shape[0]):
|
53 |
+
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
|
54 |
+
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
|
55 |
+
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
|
56 |
+
assert frame.min() >= 0 and frame.max() <= 255, \
|
57 |
+
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
|
58 |
+
frames.append(frame)
|
59 |
+
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
|
60 |
+
|
61 |
+
###############################################################################
|
62 |
+
# Configuration.
|
63 |
+
###############################################################################
|
64 |
+
|
65 |
+
import shutil
|
66 |
+
|
67 |
+
def find_cuda():
|
68 |
+
# Check if CUDA_HOME or CUDA_PATH environment variables are set
|
69 |
+
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
70 |
+
|
71 |
+
if cuda_home and os.path.exists(cuda_home):
|
72 |
+
return cuda_home
|
73 |
+
|
74 |
+
# Search for the nvcc executable in the system's PATH
|
75 |
+
nvcc_path = shutil.which('nvcc')
|
76 |
+
|
77 |
+
if nvcc_path:
|
78 |
+
# Remove the 'bin/nvcc' part to get the CUDA installation path
|
79 |
+
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
|
80 |
+
return cuda_path
|
81 |
+
|
82 |
+
return None
|
83 |
+
|
84 |
+
cuda_path = find_cuda()
|
85 |
+
|
86 |
+
if cuda_path:
|
87 |
+
print(f"CUDA installation found at: {cuda_path}")
|
88 |
+
else:
|
89 |
+
print("CUDA installation not found")
|
90 |
+
|
91 |
+
config_path = 'configs/instant-mesh-large.yaml'
|
92 |
+
config = OmegaConf.load(config_path)
|
93 |
+
config_name = os.path.basename(config_path).replace('.yaml', '')
|
94 |
+
model_config = config.model_config
|
95 |
+
infer_config = config.infer_config
|
96 |
+
|
97 |
+
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
|
98 |
+
|
99 |
+
device = torch.device('cuda')
|
100 |
+
|
101 |
+
# load diffusion model
|
102 |
+
print('Loading diffusion model ...')
|
103 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
104 |
+
"sudo-ai/zero123plus-v1.2",
|
105 |
+
custom_pipeline="zero123plus",
|
106 |
+
torch_dtype=torch.float16,
|
107 |
+
)
|
108 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
109 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
110 |
+
)
|
111 |
+
|
112 |
+
# load custom white-background UNet
|
113 |
+
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
|
114 |
+
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
115 |
+
pipeline.unet.load_state_dict(state_dict, strict=True)
|
116 |
+
|
117 |
+
pipeline = pipeline.to(device)
|
118 |
+
|
119 |
+
# load reconstruction model
|
120 |
+
print('Loading reconstruction model ...')
|
121 |
+
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
122 |
+
model = instantiate_from_config(model_config)
|
123 |
+
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
124 |
+
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
125 |
+
model.load_state_dict(state_dict, strict=True)
|
126 |
+
|
127 |
+
model = model.to(device)
|
128 |
+
|
129 |
+
print('Loading Finished!')
|
130 |
+
|
131 |
+
def check_input_image(input_image):
|
132 |
+
if input_image is None:
|
133 |
+
raise gr.Error("No image uploaded!")
|
134 |
+
|
135 |
+
|
136 |
+
def preprocess(input_image, do_remove_background):
|
137 |
+
|
138 |
+
rembg_session = rembg.new_session() if do_remove_background else None
|
139 |
+
|
140 |
+
if do_remove_background:
|
141 |
+
input_image = remove_background(input_image, rembg_session)
|
142 |
+
input_image = resize_foreground(input_image, 0.85)
|
143 |
+
|
144 |
+
return input_image
|
145 |
+
|
146 |
+
@spaces.GPU
|
147 |
+
def generate_mvs(input_image, sample_steps, sample_seed):
|
148 |
+
|
149 |
+
seed_everything(sample_seed)
|
150 |
+
|
151 |
+
# sampling
|
152 |
+
z123_image = pipeline(
|
153 |
+
input_image,
|
154 |
+
num_inference_steps=sample_steps
|
155 |
+
).images[0]
|
156 |
+
|
157 |
+
show_image = np.asarray(z123_image, dtype=np.uint8)
|
158 |
+
show_image = torch.from_numpy(show_image) # (960, 640, 3)
|
159 |
+
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
160 |
+
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
161 |
+
show_image = Image.fromarray(show_image.numpy())
|
162 |
+
|
163 |
+
return z123_image, show_image
|
164 |
+
|
165 |
+
|
166 |
+
@spaces.GPU
|
167 |
+
def make3d(images):
|
168 |
+
|
169 |
+
global model
|
170 |
+
if IS_FLEXICUBES:
|
171 |
+
model.init_flexicubes_geometry(device, use_renderer=False)
|
172 |
+
model = model.eval()
|
173 |
+
|
174 |
+
images = np.asarray(images, dtype=np.float32) / 255.0
|
175 |
+
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
|
176 |
+
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
|
177 |
+
|
178 |
+
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
179 |
+
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
180 |
+
|
181 |
+
images = images.unsqueeze(0).to(device)
|
182 |
+
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
183 |
+
|
184 |
+
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
185 |
+
print(mesh_fpath)
|
186 |
+
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
187 |
+
mesh_dirname = os.path.dirname(mesh_fpath)
|
188 |
+
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
|
189 |
+
|
190 |
+
with torch.no_grad():
|
191 |
+
# get triplane
|
192 |
+
planes = model.forward_planes(images, input_cameras)
|
193 |
+
|
194 |
+
# get mesh
|
195 |
+
mesh_out = model.extract_mesh(
|
196 |
+
planes,
|
197 |
+
use_texture_map=False,
|
198 |
+
**infer_config,
|
199 |
+
)
|
200 |
+
|
201 |
+
vertices, faces, vertex_colors = mesh_out
|
202 |
+
vertices = vertices[:, [1, 2, 0]]
|
203 |
+
vertices[:, -1] *= -1
|
204 |
+
faces = faces[:, [2, 1, 0]]
|
205 |
+
|
206 |
+
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
207 |
+
|
208 |
+
print(f"Mesh saved to {mesh_fpath}")
|
209 |
+
|
210 |
+
return mesh_fpath
|