Spaces:
Paused
Paused
File size: 10,623 Bytes
227bc73 0e0805e 227bc73 a5a4d0b 0e0805e 06d7801 c0db3ab b113647 227bc73 f9a089d 06d7801 827103d c0db3ab 8f1996d 827103d ad2ae6c 4d4355a 0e0805e 8f1996d b113647 4d4355a 8f1996d 4d4355a 06d7801 b113647 8f1996d 4d4355a 58cc987 b113647 4d4355a b113647 4d4355a 06d7801 b113647 4d4355a b113647 4d4355a b5ba988 b113647 4d4355a 84c1e9b 4d4355a 84c1e9b 4d4355a 84c1e9b b113647 84c1e9b b113647 8f1996d 84c1e9b 8f1996d b113647 84c1e9b b113647 8f1996d 84c1e9b 4d4355a 8f1996d 4d4355a 8f1996d 4d4355a b113647 4d4355a b113647 4d4355a b113647 4d4355a 8f1996d 4d4355a b113647 4d4355a b113647 4d4355a b113647 4d4355a b113647 4d4355a b113647 4d4355a b113647 c0db3ab 4d4355a b113647 4d4355a 8f1996d b113647 8f1996d 4d4355a 8f1996d 4d4355a 8f1996d 4d4355a 8f1996d 4d4355a 84c1e9b b113647 84c1e9b b5ba988 b113647 0e0805e 8f1996d c0db3ab b113647 227bc73 0e0805e 227bc73 b113647 4d4355a 84c1e9b 4d4355a 84c1e9b 4d4355a 84c1e9b 4d4355a c0db3ab 4d4355a 84c1e9b 4d4355a f9a089d 4d4355a 84c1e9b b113647 4d4355a b113647 b5ba988 4d4355a 84c1e9b 4d4355a 6ed04ac 4d4355a b113647 f7c613a b113647 c8ff766 8f1996d 9191d3a b113647 c8ff766 b113647 84c1e9b 227bc73 e271092 227bc73 ada5e6d 0e0805e c0db3ab b113647 227bc73 c0db3ab 4d4355a c0db3ab b113647 227bc73 0e0805e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import spaces
import gradio as gr
import argparse
import sys
import os
import random
import subprocess
from PIL import Image
import numpy as np
# Removed environment-specific lines
from diffusers.utils import export_to_video
from diffusers.utils import load_image
import torch
import logging
from collections import OrderedDict
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.set_float32_matmul_precision("highest")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger = logging.getLogger(__name__)
# --- Dummy Classes (Keep for standalone execution) ---
class OffloadConfig:
def __init__(
self,
high_cpu_memory: bool = False,
parameters_level: bool = False,
compiler_transformer: bool = False,
compiler_cache: str = "",
):
self.high_cpu_memory = high_cpu_memory
self.parameters_level = parameters_level
self.compiler_transformer = compiler_transformer
self.compiler_cache = compiler_cache
class TaskType: # Keep here for infer
T2V = 0
I2V = 1
class LlamaModel:
@staticmethod
def from_pretrained(*args, **kwargs):
return LlamaModel()
def to(self, device):
return self
class HunyuanVideoTransformer3DModel:
@staticmethod
def from_pretrained(*args, **kwargs):
return HunyuanVideoTransformer3DModel()
def to(self, device):
return self
class SkyreelsVideoPipeline:
@staticmethod
def from_pretrained(*args, **kwargs):
return SkyreelsVideoPipeline()
def to(self, device):
return self
def __call__(self, *args, **kwargs):
num_frames = kwargs.get("num_frames", 16) # Default to 16 frames
height = kwargs.get("height", 512)
width = kwargs.get("width", 512)
if "image" in kwargs: # I2V
image = kwargs["image"]
# Convert PIL Image to PyTorch tensor (and normalize to [0, 1])
image_tensor = torch.from_numpy(np.array(image)).float() / 255.0
image_tensor = image_tensor.permute(2, 0, 1).unsqueeze(0) # (H, W, C) -> (1, C, H, W)
# Create video by repeating the image
frames = image_tensor.repeat(1, 1, num_frames, 1, 1) # (1, C, T, H, W)
frames = frames + torch.randn_like(frames) * 0.05 # Add a little noise
# Correct shape: (1, C, T, H, W) - NO PERMUTE HERE
else: # T2V
frames = torch.randn(1, 3, num_frames, height, width) # (1, C, T, H, W) - Correct!
return type("obj", (object,), {"frames": frames})() # No longer a list!
def __init__(self):
super().__init__()
self._modules = OrderedDict()
self.vae = self.VAE()
self._modules["vae"] = self.vae
def named_children(self):
return self._modules.items()
class VAE:
def enable_tiling(self):
pass
def quantize_(*args, **kwargs):
return
def float8_weight_only():
return
# --- End Dummy Classes ---
class SkyReelsVideoSingleGpuInfer:
def _load_model(
self, model_id: str, base_model_id: str = "hunyuanvideo-community/HunyuanVideo", quant_model: bool = True
):
logger.info(f"load model model_id:{model_id} quan_model:{quant_model}")
text_encoder = LlamaModel.from_pretrained(
base_model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
).to("cpu")
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device="cpu"
).to("cpu")
if quant_model:
quantize_(text_encoder, float8_weight_only())
text_encoder.to("cpu")
torch.cuda.empty_cache()
quantize_(transformer, float8_weight_only())
transformer.to("cpu")
torch.cuda.empty_cache()
pipe = SkyreelsVideoPipeline.from_pretrained(
base_model_id, transformer=transformer, text_encoder=text_encoder, torch_dtype=torch.bfloat16
).to("cpu")
pipe.vae.enable_tiling()
torch.cuda.empty_cache()
return pipe
def __init__(
self,
task_type: TaskType,
model_id: str,
quant_model: bool = True,
is_offload: bool = True,
offload_config: OffloadConfig = OffloadConfig(),
enable_cfg_parallel: bool = True,
):
self.task_type = task_type
self.model_id = model_id
self.quant_model = quant_model
self.is_offload = is_offload
self.offload_config = offload_config
self.enable_cfg_parallel = enable_cfg_parallel
self.pipe = None
self.is_initialized = False
self.gpu_device = None
def initialize(self):
"""Initializes the model and moves it to the GPU."""
if self.is_initialized:
return
if not torch.cuda.is_available():
raise RuntimeError("CUDA is not available. Cannot initialize model.")
self.gpu_device = "cuda:0"
self.pipe = self._load_model(model_id=self.model_id, quant_model=self.quant_model)
if self.is_offload:
pass
else:
self.pipe.to(self.gpu_device)
if self.offload_config.compiler_transformer:
torch._dynamo.config.suppress_errors = True
os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
os.environ["TORCHINDUCTOR_CACHE_DIR"] = f"{self.offload_config.compiler_cache}"
self.pipe.transformer = torch.compile(
self.pipe.transformer, mode="max-autotune-no-cudagraphs", dynamic=True
)
if self.offload_config.compiler_transformer:
self.warm_up()
self.is_initialized = True
def warm_up(self):
if not self.is_initialized:
raise RuntimeError("Model must be initialized before warm-up.")
init_kwargs = {
"prompt": "A woman is dancing in a room",
"height": 544,
"width": 960,
"guidance_scale": 6,
"num_inference_steps": 1,
"negative_prompt": "bad quality",
"num_frames": 16,
"generator": torch.Generator(self.gpu_device).manual_seed(42),
"embedded_guidance_scale": 1.0,
}
if self.task_type == TaskType.I2V:
init_kwargs["image"] = Image.new("RGB", (544, 960), color="black")
self.pipe(**init_kwargs)
logger.info("Warm-up complete.")
def infer(self, **kwargs):
"""Handles inference requests."""
if not self.is_initialized:
self.initialize()
if "seed" in kwargs:
kwargs["generator"] = torch.Generator(self.gpu_device).manual_seed(kwargs["seed"])
del kwargs["seed"]
assert (self.task_type == TaskType.I2V and "image" in kwargs) or self.task_type == TaskType.T2V
result = self.pipe(**kwargs).frames # Return the tensor directly
return result
_predictor = None
@spaces.GPU(duration=90)
def generate_video(prompt: str, seed: int, image: str = None) -> tuple[str, dict]:
"""Generates a video based on the given prompt and seed.
Args:
prompt: The text prompt to guide video generation.
seed: The random seed for reproducibility.
image: Optional path to an image for Image-to-Video.
Returns:
A tuple containing the path to the generated video and the parameters used.
"""
global _predictor
if seed == -1:
random.seed()
seed = int(random.randrange(4294967294))
if image is None:
task_type = TaskType.T2V
model_id = "Skywork/SkyReels-V1-Hunyuan-T2V"
kwargs = {
"prompt": prompt,
"height": 512,
"width": 512,
"num_frames": 16,
"num_inference_steps": 30,
"seed": seed,
"guidance_scale": 7.5,
"negative_prompt": "bad quality, worst quality",
}
else:
task_type = TaskType.I2V
model_id = "Skywork/SkyReels-V1-Hunyuan-I2V"
kwargs = {
"prompt": prompt,
"image": load_image(image),
"height": 512,
"width": 512,
"num_frames": 97,
"num_inference_steps": 30,
"seed": seed,
"guidance_scale": 6.0,
"embedded_guidance_scale": 1.0,
"negative_prompt": "Aerial view, low quality, bad hands",
"cfg_for": False,
}
if _predictor is None:
_predictor = SkyReelsVideoSingleGpuInfer(
task_type=task_type,
model_id=model_id,
quant_model=True,
is_offload=True,
offload_config=OffloadConfig(
high_cpu_memory=True,
parameters_level=True,
compiler_transformer=False,
),
)
_predictor.initialize()
logger.info("Predictor initialized")
with torch.no_grad():
output = _predictor.infer(**kwargs)
'''
output = (output.numpy() * 255).astype(np.uint8)
# Correct Transpose: (1, C, T, H, W) -> (1, T, H, W, C)
output = output.transpose(0, 2, 3, 4, 1)
output = output[0] # Remove batch dimension: (T, H, W, C)
'''
save_dir = f"./result"
os.makedirs(save_dir, exist_ok=True)
video_out_file = f"{save_dir}/{seed}.mp4"
print(f"generate video, local path: {video_out_file}")
export_to_video(output, video_out_file, fps=24)
return video_out_file, kwargs
def create_gradio_interface():
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload Image", type="filepath")
prompt = gr.Textbox(label="Input Prompt")
seed = gr.Number(label="Random Seed", value=-1)
with gr.Column():
submit_button = gr.Button("Generate Video")
output_video = gr.Video(label="Generated Video")
output_params = gr.Textbox(label="Output Parameters")
submit_button.click(
fn=generate_video,
inputs=[prompt, seed, image],
outputs=[output_video, output_params],
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue().launch() |