Spaces:
Configuration error
Configuration error
Upload 25 files
Browse files- .gitattributes +2 -0
- .gitignore +129 -0
- Face_info.py +45 -0
- LICENSE +21 -0
- README.md +31 -12
- __pycache__/f_Face_info.cpython-310.pyc +0 -0
- __pycache__/f_Face_info.cpython-39.pyc +0 -0
- age_detection/f_my_age.py +70 -0
- config.py +12 -0
- data_test/0.jpg +0 -0
- data_test/1.jpg +0 -0
- data_test/friends.jpg +0 -0
- deep_face.py +9 -0
- emotion_detection/Modelos/model_dropout.hdf5 +3 -0
- emotion_detection/f_emotion_detection.py +37 -0
- f_Face_info.py +112 -0
- gender_detection/f_my_gender.py +57 -0
- images_db/juan.jpg +0 -0
- images_db/karo.jpg +0 -0
- my_face_recognition/f_face_recognition.py +47 -0
- my_face_recognition/f_main.py +107 -0
- my_face_recognition/f_storage.py +57 -0
- race_detection/f_my_race.py +67 -0
- requirements.txt +82 -0
- results/Face_ID.gif +3 -0
- results/result.png +0 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
emotion_detection/Modelos/model_dropout.hdf5 filter=lfs diff=lfs merge=lfs -text
|
36 |
+
results/Face_ID.gif filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
Face_info.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import f_Face_info
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import imutils
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
parser = argparse.ArgumentParser(description="Face Info")
|
8 |
+
parser.add_argument('--input', type=str, default= 'webcam',
|
9 |
+
help="webcam or image")
|
10 |
+
parser.add_argument('--path_im', type=str,
|
11 |
+
help="path of image")
|
12 |
+
args = vars(parser.parse_args())
|
13 |
+
|
14 |
+
type_input = args['input']
|
15 |
+
if type_input == 'image':
|
16 |
+
# ----------------------------- image -----------------------------
|
17 |
+
#ingestar data
|
18 |
+
frame = cv2.imread(args['path_im'])
|
19 |
+
# obtenego info del frame
|
20 |
+
out = f_Face_info.get_face_info(frame)
|
21 |
+
# pintar imagen
|
22 |
+
res_img = f_Face_info.bounding_box(out,frame)
|
23 |
+
cv2.imshow('Face info',res_img)
|
24 |
+
cv2.waitKey(0)
|
25 |
+
|
26 |
+
if type_input == 'webcam':
|
27 |
+
# ----------------------------- webcam -----------------------------
|
28 |
+
cv2.namedWindow("Face info")
|
29 |
+
cam = cv2.VideoCapture(0)
|
30 |
+
while True:
|
31 |
+
star_time = time.time()
|
32 |
+
ret, frame = cam.read()
|
33 |
+
frame = imutils.resize(frame, width=720)
|
34 |
+
|
35 |
+
# obtenego info del frame
|
36 |
+
out = f_Face_info.get_face_info(frame)
|
37 |
+
# pintar imagen
|
38 |
+
res_img = f_Face_info.bounding_box(out,frame)
|
39 |
+
|
40 |
+
end_time = time.time() - star_time
|
41 |
+
FPS = 1/end_time
|
42 |
+
cv2.putText(res_img,f"FPS: {round(FPS,3)}",(10,50),cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2)
|
43 |
+
cv2.imshow('Face info',res_img)
|
44 |
+
if cv2.waitKey(1) &0xFF == ord('q'):
|
45 |
+
break
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Juan Camilo López Montes
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,31 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Face Info
|
2 |
+
Face Info is an implementation of facial recognition, detection of facial attributes (age, gender, emotion and race) for python.
|
3 |
+
The repository provides a script to run Face Info with the webcam or by entering the path of an image.
|
4 |
+
This implementation allows recognition of multiple faces and the registration of new users for facial recognition.
|
5 |
+
|
6 |
+
# How to install:
|
7 |
+
<pre><code>pip install -r requirements.txt </code></pre>
|
8 |
+
|
9 |
+
|
10 |
+
# How to run:
|
11 |
+
The code is tested in python 3.7.8 and macOS Catalina
|
12 |
+
<pre><code>python Face_info.py --input webcam </code></pre>
|
13 |
+
![alt text](https://github.com/juan-csv/Face_info/blob/master/results/Face_ID.gif)
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
running over an image
|
18 |
+
<pre><code>python Face_info.py --input image --path_im data_test/friends.jpg </code></pre>
|
19 |
+
![alt text](https://github.com/juan-csv/Face_info/blob/master/results/result.png)
|
20 |
+
|
21 |
+
|
22 |
+
# Add new faces to the database (facial recognition)
|
23 |
+
You can add new users to the faces database simply by adding the person's photo in the **images_db** folder, for the registry to work correctly, only the person of interest should appear in the photo.
|
24 |
+
|
25 |
+
# References
|
26 |
+
|
27 |
+
- **Emotion detection:** https://github.com/juan-csv/emotion_detection
|
28 |
+
- **Face Recognition:** https://github.com/juan-csv/face-recognition
|
29 |
+
- **Age detection:** https://github.com/serengil/deepface
|
30 |
+
- **Gender detection:** https://github.com/serengil/deepface
|
31 |
+
- **Race detection:** https://github.com/serengil/deepface
|
__pycache__/f_Face_info.cpython-310.pyc
ADDED
Binary file (2.24 kB). View file
|
|
__pycache__/f_Face_info.cpython-39.pyc
ADDED
Binary file (2.26 kB). View file
|
|
age_detection/f_my_age.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
como usar
|
3 |
+
1.instalar la libreria deepface
|
4 |
+
pip install deepface
|
5 |
+
2. instanciar el modelo
|
6 |
+
emo = f_my_emotion.Age_Model()
|
7 |
+
3. ingresar una imagen donde solo se vea un rostro (usar modelo deteccion de rostros para extraer una imagen con solo el rostro)
|
8 |
+
emo.predict_age(face_image)
|
9 |
+
"""
|
10 |
+
|
11 |
+
|
12 |
+
#from basemodels import VGGFace
|
13 |
+
from deepface.basemodels import VGGFace
|
14 |
+
import os
|
15 |
+
from pathlib import Path
|
16 |
+
import gdown
|
17 |
+
import numpy as np
|
18 |
+
from keras.models import Model, Sequential
|
19 |
+
from keras.layers import Convolution2D, Flatten, Activation
|
20 |
+
from keras.preprocessing import image
|
21 |
+
import cv2
|
22 |
+
|
23 |
+
|
24 |
+
class Age_Model():
|
25 |
+
def __init__(self):
|
26 |
+
self.model = self.loadModel()
|
27 |
+
self.output_indexes = np.array([i for i in range(0, 101)])
|
28 |
+
|
29 |
+
def predict_age(self,face_image):
|
30 |
+
image_preprocesing = self.transform_face_array2age_face(face_image)
|
31 |
+
age_predictions = self.model.predict(image_preprocesing )[0,:]
|
32 |
+
result_age = self.findApparentAge(age_predictions)
|
33 |
+
return result_age
|
34 |
+
|
35 |
+
def loadModel(self):
|
36 |
+
model = VGGFace.baseModel()
|
37 |
+
#--------------------------
|
38 |
+
classes = 101
|
39 |
+
base_model_output = Sequential()
|
40 |
+
base_model_output = Convolution2D(classes, (1, 1), name='predictions')(model.layers[-4].output)
|
41 |
+
base_model_output = Flatten()(base_model_output)
|
42 |
+
base_model_output = Activation('softmax')(base_model_output)
|
43 |
+
#--------------------------
|
44 |
+
age_model = Model(inputs=model.input, outputs=base_model_output)
|
45 |
+
#--------------------------
|
46 |
+
#load weights
|
47 |
+
home = str(Path.home())
|
48 |
+
if os.path.isfile(home+'/.deepface/weights/age_model_weights.h5') != True:
|
49 |
+
print("age_model_weights.h5 will be downloaded...")
|
50 |
+
url = 'https://drive.google.com/uc?id=1YCox_4kJ-BYeXq27uUbasu--yz28zUMV'
|
51 |
+
output = home+'/.deepface/weights/age_model_weights.h5'
|
52 |
+
gdown.download(url, output, quiet=False)
|
53 |
+
age_model.load_weights(home+'/.deepface/weights/age_model_weights.h5')
|
54 |
+
return age_model
|
55 |
+
#--------------------------
|
56 |
+
|
57 |
+
def findApparentAge(self,age_predictions):
|
58 |
+
apparent_age = np.sum(age_predictions * self.output_indexes)
|
59 |
+
return apparent_age
|
60 |
+
|
61 |
+
def transform_face_array2age_face(self,face_array,grayscale=False,target_size = (224, 224)):
|
62 |
+
detected_face = face_array
|
63 |
+
if grayscale == True:
|
64 |
+
detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY)
|
65 |
+
detected_face = cv2.resize(detected_face, target_size)
|
66 |
+
img_pixels = image.img_to_array(detected_face)
|
67 |
+
img_pixels = np.expand_dims(img_pixels, axis = 0)
|
68 |
+
#normalize input in [0, 1]
|
69 |
+
img_pixels /= 255
|
70 |
+
return img_pixels
|
config.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -------------------------------------- emotion_detection ---------------------------------------
|
2 |
+
# modelo de deteccion de emociones
|
3 |
+
path_model = 'emotion_detection/Modelos/model_dropout.hdf5'
|
4 |
+
# Parametros del modelo, la imagen se debe convertir a una de tamaño 48x48 en escala de grises
|
5 |
+
w,h = 48,48
|
6 |
+
rgb = False
|
7 |
+
labels = ['angry','disgust','fear','happy','neutral','sad','surprise']
|
8 |
+
|
9 |
+
# -------------------------------------- face_recognition ---------------------------------------
|
10 |
+
# path imagenes folder
|
11 |
+
path_images = "images_db"
|
12 |
+
|
data_test/0.jpg
ADDED
data_test/1.jpg
ADDED
data_test/friends.jpg
ADDED
deep_face.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from deepface import DeepFace
|
2 |
+
demography = DeepFace.analyze("juan.jpg", actions = ['age', 'gender', 'race', 'emotion'])
|
3 |
+
#demographies = DeepFace.analyze(["img1.jpg", "img2.jpg", "img3.jpg"]) #analyzing multiple faces same time
|
4 |
+
print("Age: ", demography["age"])
|
5 |
+
print("Gender: ", demography["gender"])
|
6 |
+
print("Emotion: ", demography["dominant_emotion"])
|
7 |
+
print("Race: ", demography["dominant_race"])
|
8 |
+
|
9 |
+
|
emotion_detection/Modelos/model_dropout.hdf5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11b4f80613fe377a57ee0a09046bcfe87d3ccb2a21f9e63dda05bad384981c55
|
3 |
+
size 53819464
|
emotion_detection/f_emotion_detection.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import config as cfg
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from keras.models import load_model
|
5 |
+
from keras.preprocessing.image import img_to_array
|
6 |
+
|
7 |
+
class predict_emotions():
|
8 |
+
def __init__(self):
|
9 |
+
# cargo modelo de deteccion de emociones
|
10 |
+
self.model = load_model(cfg.path_model)
|
11 |
+
|
12 |
+
def preprocess_img(self,face_image,rgb=True,w=48,h=48):
|
13 |
+
face_image = cv2.resize(face_image, (w,h))
|
14 |
+
if rgb == False:
|
15 |
+
face_image = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)
|
16 |
+
face_image = face_image.astype("float") / 255.0
|
17 |
+
face_image= img_to_array(face_image)
|
18 |
+
face_image = np.expand_dims(face_image, axis=0)
|
19 |
+
return face_image
|
20 |
+
|
21 |
+
def get_emotion(self,img,boxes_face):
|
22 |
+
emotions = []
|
23 |
+
if len(boxes_face)!=0:
|
24 |
+
for box in boxes_face:
|
25 |
+
y0,x0,y1,x1 = box
|
26 |
+
face_image = img[x0:x1,y0:y1]
|
27 |
+
# preprocesar data
|
28 |
+
face_image = self.preprocess_img(face_image ,cfg.rgb, cfg.w, cfg.h)
|
29 |
+
# predecir imagen
|
30 |
+
prediction = self.model.predict(face_image)
|
31 |
+
emotion = cfg.labels[prediction.argmax()]
|
32 |
+
emotions.append(emotion)
|
33 |
+
else:
|
34 |
+
emotions = []
|
35 |
+
boxes_face = []
|
36 |
+
return boxes_face,emotions
|
37 |
+
|
f_Face_info.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import face_recognition
|
4 |
+
from age_detection import f_my_age
|
5 |
+
from gender_detection import f_my_gender
|
6 |
+
from race_detection import f_my_race
|
7 |
+
from emotion_detection import f_emotion_detection
|
8 |
+
from my_face_recognition import f_main
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# instanciar detectores
|
13 |
+
age_detector = f_my_age.Age_Model()
|
14 |
+
gender_detector = f_my_gender.Gender_Model()
|
15 |
+
race_detector = f_my_race.Race_Model()
|
16 |
+
emotion_detector = f_emotion_detection.predict_emotions()
|
17 |
+
rec_face = f_main.rec()
|
18 |
+
#----------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def get_face_info(im):
|
23 |
+
# face detection
|
24 |
+
boxes_face = face_recognition.face_locations(im)
|
25 |
+
out = []
|
26 |
+
if len(boxes_face)!=0:
|
27 |
+
for box_face in boxes_face:
|
28 |
+
# segmento rostro
|
29 |
+
box_face_fc = box_face
|
30 |
+
x0,y1,x1,y0 = box_face
|
31 |
+
box_face = np.array([y0,x0,y1,x1])
|
32 |
+
face_features = {
|
33 |
+
"name":[],
|
34 |
+
"age":[],
|
35 |
+
"gender":[],
|
36 |
+
"race":[],
|
37 |
+
"emotion":[],
|
38 |
+
"bbx_frontal_face":box_face
|
39 |
+
}
|
40 |
+
|
41 |
+
face_image = im[x0:x1,y0:y1]
|
42 |
+
|
43 |
+
# -------------------------------------- face_recognition ---------------------------------------
|
44 |
+
face_features["name"] = rec_face.recognize_face2(im,[box_face_fc])[0]
|
45 |
+
|
46 |
+
# -------------------------------------- age_detection ---------------------------------------
|
47 |
+
age = age_detector.predict_age(face_image)
|
48 |
+
face_features["age"] = str(round(age,2))
|
49 |
+
|
50 |
+
# -------------------------------------- gender_detection ---------------------------------------
|
51 |
+
face_features["gender"] = gender_detector.predict_gender(face_image)
|
52 |
+
|
53 |
+
# -------------------------------------- race_detection ---------------------------------------
|
54 |
+
face_features["race"] = race_detector.predict_race(face_image)
|
55 |
+
|
56 |
+
# -------------------------------------- emotion_detection ---------------------------------------
|
57 |
+
_,emotion = emotion_detector.get_emotion(im,[box_face])
|
58 |
+
face_features["emotion"] = emotion[0]
|
59 |
+
|
60 |
+
# -------------------------------------- out ---------------------------------------
|
61 |
+
out.append(face_features)
|
62 |
+
else:
|
63 |
+
face_features = {
|
64 |
+
"name":[],
|
65 |
+
"age":[],
|
66 |
+
"gender":[],
|
67 |
+
"race":[],
|
68 |
+
"emotion":[],
|
69 |
+
"bbx_frontal_face":[]
|
70 |
+
}
|
71 |
+
out.append(face_features)
|
72 |
+
return out
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
def bounding_box(out,img):
|
77 |
+
for data_face in out:
|
78 |
+
box = data_face["bbx_frontal_face"]
|
79 |
+
if len(box) == 0:
|
80 |
+
continue
|
81 |
+
else:
|
82 |
+
x0,y0,x1,y1 = box
|
83 |
+
img = cv2.rectangle(img,
|
84 |
+
(x0,y0),
|
85 |
+
(x1,y1),
|
86 |
+
(0,255,0),2);
|
87 |
+
thickness = 1
|
88 |
+
fontSize = 0.5
|
89 |
+
step = 13
|
90 |
+
|
91 |
+
try:
|
92 |
+
cv2.putText(img, "age: " +data_face["age"], (x0, y0-7), cv2.FONT_HERSHEY_SIMPLEX, fontSize, (0,255,0), thickness)
|
93 |
+
except:
|
94 |
+
pass
|
95 |
+
try:
|
96 |
+
cv2.putText(img, "gender: " +data_face["gender"], (x0, y0-step-10*1), cv2.FONT_HERSHEY_SIMPLEX, fontSize, (0,255,0), thickness)
|
97 |
+
except:
|
98 |
+
pass
|
99 |
+
try:
|
100 |
+
cv2.putText(img, "race: " +data_face["race"], (x0, y0-step-10*2), cv2.FONT_HERSHEY_SIMPLEX, fontSize, (0,255,0), thickness)
|
101 |
+
except:
|
102 |
+
pass
|
103 |
+
try:
|
104 |
+
cv2.putText(img, "emotion: " +data_face["emotion"], (x0, y0-step-10*3), cv2.FONT_HERSHEY_SIMPLEX, fontSize, (0,255,0), thickness)
|
105 |
+
except:
|
106 |
+
pass
|
107 |
+
try:
|
108 |
+
cv2.putText(img, "name: " +data_face["name"], (x0, y0-step-10*4), cv2.FONT_HERSHEY_SIMPLEX, fontSize, (0,255,0), thickness)
|
109 |
+
except:
|
110 |
+
pass
|
111 |
+
return img
|
112 |
+
|
gender_detection/f_my_gender.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#from basemodels import VGGFace
|
2 |
+
from deepface.basemodels import VGGFace
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
import gdown
|
6 |
+
import numpy as np
|
7 |
+
from keras.models import Model, Sequential
|
8 |
+
from keras.layers import Convolution2D, Flatten, Activation
|
9 |
+
from keras.preprocessing import image
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
|
13 |
+
class Gender_Model():
|
14 |
+
def __init__(self):
|
15 |
+
self.model = self.loadModel()
|
16 |
+
|
17 |
+
def predict_gender(self, face_image):
|
18 |
+
image_preprocesing = self.transform_face_array2gender_face(face_image)
|
19 |
+
gender_predictions = self.model.predict(image_preprocesing )[0,:]
|
20 |
+
if np.argmax(gender_predictions) == 0:
|
21 |
+
result_gender = "Woman"
|
22 |
+
elif np.argmax(gender_predictions) == 1:
|
23 |
+
result_gender = "Man"
|
24 |
+
return result_gender
|
25 |
+
|
26 |
+
def loadModel(self):
|
27 |
+
model = VGGFace.baseModel()
|
28 |
+
#--------------------------
|
29 |
+
classes = 2
|
30 |
+
base_model_output = Sequential()
|
31 |
+
base_model_output = Convolution2D(classes, (1, 1), name='predictions')(model.layers[-4].output)
|
32 |
+
base_model_output = Flatten()(base_model_output)
|
33 |
+
base_model_output = Activation('softmax')(base_model_output)
|
34 |
+
#--------------------------
|
35 |
+
gender_model = Model(inputs=model.input, outputs=base_model_output)
|
36 |
+
#--------------------------
|
37 |
+
#load weights
|
38 |
+
home = str(Path.home())
|
39 |
+
if os.path.isfile(home+'/.deepface/weights/gender_model_weights.h5') != True:
|
40 |
+
print("gender_model_weights.h5 will be downloaded...")
|
41 |
+
url = 'https://drive.google.com/uc?id=1wUXRVlbsni2FN9-jkS_f4UTUrm1bRLyk'
|
42 |
+
output = home+'/.deepface/weights/gender_model_weights.h5'
|
43 |
+
gdown.download(url, output, quiet=False)
|
44 |
+
gender_model.load_weights(home+'/.deepface/weights/gender_model_weights.h5')
|
45 |
+
return gender_model
|
46 |
+
#--------------------------
|
47 |
+
|
48 |
+
def transform_face_array2gender_face(self,face_array,grayscale=False,target_size = (224, 224)):
|
49 |
+
detected_face = face_array
|
50 |
+
if grayscale == True:
|
51 |
+
detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY)
|
52 |
+
detected_face = cv2.resize(detected_face, target_size)
|
53 |
+
img_pixels = image.img_to_array(detected_face)
|
54 |
+
img_pixels = np.expand_dims(img_pixels, axis = 0)
|
55 |
+
#normalize input in [0, 1]
|
56 |
+
img_pixels /= 255
|
57 |
+
return img_pixels
|
images_db/juan.jpg
ADDED
images_db/karo.jpg
ADDED
my_face_recognition/f_face_recognition.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import face_recognition
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def detect_face(image):
|
5 |
+
'''
|
6 |
+
Input: imagen numpy.ndarray, shape=(W,H,3)
|
7 |
+
Output: [(y0,x1,y1,x0),(y0,x1,y1,x0),...,(y0,x1,y1,x0)] ,cada tupla representa un rostro detectado
|
8 |
+
si no se detecta nada --> Output: []
|
9 |
+
'''
|
10 |
+
Output = face_recognition.face_locations(image)
|
11 |
+
return Output
|
12 |
+
|
13 |
+
def get_features(img,box):
|
14 |
+
'''
|
15 |
+
Input:
|
16 |
+
-img:imagen numpy.ndarray, shape=(W,H,3)
|
17 |
+
-box: [(y0,x1,y1,x0),(y0,x1,y1,x0),...,(y0,x1,y1,x0)] ,cada tupla representa un rostro detectado
|
18 |
+
Output:
|
19 |
+
-features: [array,array,...,array] , cada array representa las caracteristicas de un rostro
|
20 |
+
'''
|
21 |
+
features = face_recognition.face_encodings(img,box)
|
22 |
+
return features
|
23 |
+
|
24 |
+
def compare_faces(face_encodings,db_features,db_names):
|
25 |
+
'''
|
26 |
+
Input:
|
27 |
+
db_features = [array,array,...,array] , cada array representa las caracteristicas de un rostro
|
28 |
+
db_names = array(array,array,...,array) cada array representa las caracteriticas de un usuario
|
29 |
+
Output:
|
30 |
+
-match_name: ['name', 'unknow'] lista con los nombres que hizo match
|
31 |
+
si no hace match pero hay una persona devuelve 'unknow'
|
32 |
+
'''
|
33 |
+
match_name = []
|
34 |
+
names_temp = db_names
|
35 |
+
Feats_temp = db_features
|
36 |
+
|
37 |
+
for face_encoding in face_encodings:
|
38 |
+
try:
|
39 |
+
dist = face_recognition.face_distance(Feats_temp,face_encoding)
|
40 |
+
except:
|
41 |
+
dist = face_recognition.face_distance([Feats_temp],face_encoding)
|
42 |
+
index = np.argmin(dist)
|
43 |
+
if dist[index] <= 0.6:
|
44 |
+
match_name = match_name + [names_temp[index]]
|
45 |
+
else:
|
46 |
+
match_name = match_name + ["unknow"]
|
47 |
+
return match_name
|
my_face_recognition/f_main.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from my_face_recognition import f_face_recognition as rec_face
|
2 |
+
from my_face_recognition import f_storage as st
|
3 |
+
import traceback
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
#------------------------ Inicia el flujo principal ----------------------------
|
8 |
+
class rec():
|
9 |
+
def __init__(self):
|
10 |
+
'''
|
11 |
+
-db_names: [name1,name2,...,namen] lista de strings
|
12 |
+
-db_features: array(array,array,...,array) cada array representa las caracteriticas de un usuario
|
13 |
+
'''
|
14 |
+
self.db_names, self.db_features = st.load_images_to_database()
|
15 |
+
|
16 |
+
def recognize_face(self,im):
|
17 |
+
'''
|
18 |
+
Input:
|
19 |
+
-imb64: imagen
|
20 |
+
Output:
|
21 |
+
res:{'status': si todo sale bien es 'ok' en otro caso devuelve el erroe encontrado
|
22 |
+
'faces': [(y0,x1,y1,x0),(y0,x1,y1,x0),...,(y0,x1,y1,x0)] ,cada tupla representa un rostro detectado
|
23 |
+
'names': ['name', 'unknow'] lista con los nombres que hizo match}
|
24 |
+
'''
|
25 |
+
try:
|
26 |
+
# detectar rostro
|
27 |
+
box_faces = rec_face.detect_face(im)
|
28 |
+
# condiconal para el caso de que no se detecte rostro
|
29 |
+
if not box_faces:
|
30 |
+
res = {
|
31 |
+
'status':'ok',
|
32 |
+
'faces':[],
|
33 |
+
'names':[]}
|
34 |
+
return res
|
35 |
+
else:
|
36 |
+
if not self.db_names:
|
37 |
+
res = {
|
38 |
+
'status':'ok',
|
39 |
+
'faces':box_faces,
|
40 |
+
'names':['unknow']*len(box_faces)}
|
41 |
+
return res
|
42 |
+
else:
|
43 |
+
# (continua) extraer features
|
44 |
+
actual_features = rec_face.get_features(im,box_faces)
|
45 |
+
# comparar actual_features con las que estan almacenadas en la base de datos
|
46 |
+
match_names = rec_face.compare_faces(actual_features,self.db_features,self.db_names)
|
47 |
+
# guardar
|
48 |
+
res = {
|
49 |
+
'status':'ok',
|
50 |
+
'faces':box_faces,
|
51 |
+
'names':match_names}
|
52 |
+
return res
|
53 |
+
except Exception as ex:
|
54 |
+
error = ''.join(traceback.format_exception(etype=type(ex), value=ex, tb=ex.__traceback__))
|
55 |
+
res = {
|
56 |
+
'status':'error: ' + str(error),
|
57 |
+
'faces':[],
|
58 |
+
'names':[]}
|
59 |
+
return res
|
60 |
+
|
61 |
+
def recognize_face2(self,im,box_faces):
|
62 |
+
try:
|
63 |
+
if not self.db_names:
|
64 |
+
res = 'unknow'
|
65 |
+
return res
|
66 |
+
else:
|
67 |
+
# (continua) extraer features
|
68 |
+
actual_features = rec_face.get_features(im,box_faces)
|
69 |
+
# comparar actual_features con las que estan almacenadas en la base de datos
|
70 |
+
match_names = rec_face.compare_faces(actual_features,self.db_features,self.db_names)
|
71 |
+
# guardar
|
72 |
+
res = match_names
|
73 |
+
return res
|
74 |
+
except:
|
75 |
+
res = []
|
76 |
+
return res
|
77 |
+
|
78 |
+
|
79 |
+
def bounding_box(img,box,match_name=[]):
|
80 |
+
for i in np.arange(len(box)):
|
81 |
+
x0,y0,x1,y1 = box[i]
|
82 |
+
img = cv2.rectangle(img,
|
83 |
+
(x0,y0),
|
84 |
+
(x1,y1),
|
85 |
+
(0,255,0),3);
|
86 |
+
if not match_name:
|
87 |
+
continue
|
88 |
+
else:
|
89 |
+
cv2.putText(img, match_name[i], (x0, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0,255,0), 2)
|
90 |
+
return img
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
import argparse
|
94 |
+
|
95 |
+
parse = argparse.ArgumentParser()
|
96 |
+
parse.add_argument("-im","--path_im",help="path image")
|
97 |
+
parse = parse.parse_args()
|
98 |
+
|
99 |
+
path_im = parse.path_im
|
100 |
+
im = cv2.imread(path_im)
|
101 |
+
# instancio detector
|
102 |
+
recognizer = rec()
|
103 |
+
res = recognizer.recognize_face(im)
|
104 |
+
im = bounding_box(im,res["faces"],res["names"])
|
105 |
+
cv2.imshow("face recogntion", im)
|
106 |
+
cv2.waitKey(0)
|
107 |
+
print(res)
|
my_face_recognition/f_storage.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
cargo las imagenes que estan en el folder database_images
|
3 |
+
'''
|
4 |
+
import config as cfg
|
5 |
+
import os
|
6 |
+
from my_face_recognition import f_main
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import traceback
|
10 |
+
|
11 |
+
|
12 |
+
def load_images_to_database():
|
13 |
+
list_images = os.listdir(cfg.path_images)
|
14 |
+
# filto los archivos que no son imagenes
|
15 |
+
list_images = [File for File in list_images if File.endswith(('.jpg','.jpeg','JPEG'))]
|
16 |
+
|
17 |
+
# inicalizo variables
|
18 |
+
name = []
|
19 |
+
Feats = []
|
20 |
+
|
21 |
+
# ingesta de imagenes
|
22 |
+
for file_name in list_images:
|
23 |
+
im = cv2.imread(cfg.path_images+os.sep+file_name)
|
24 |
+
|
25 |
+
# obtengo las caracteristicas del rostro
|
26 |
+
box_face = f_main.rec_face.detect_face(im)
|
27 |
+
feat = f_main.rec_face.get_features(im,box_face)
|
28 |
+
if len(feat)!=1:
|
29 |
+
'''
|
30 |
+
esto significa que no hay rostros o hay mas de un rostro
|
31 |
+
'''
|
32 |
+
continue
|
33 |
+
else:
|
34 |
+
# inserto las nuevas caracteristicas en la base de datos
|
35 |
+
new_name = file_name.split(".")[0]
|
36 |
+
if new_name == "":
|
37 |
+
continue
|
38 |
+
name.append(new_name)
|
39 |
+
if len(Feats)==0:
|
40 |
+
Feats = np.frombuffer(feat[0], dtype=np.float64)
|
41 |
+
else:
|
42 |
+
Feats = np.vstack((Feats,np.frombuffer(feat[0], dtype=np.float64)))
|
43 |
+
return name, Feats
|
44 |
+
|
45 |
+
def insert_new_user(rec_face,name,feat,im):
|
46 |
+
try:
|
47 |
+
rec_face.db_names.append(name)
|
48 |
+
if len(rec_face.db_features)==0:
|
49 |
+
rec_face.db_features = np.frombuffer(feat[0], dtype=np.float64)
|
50 |
+
else:
|
51 |
+
rec_face.db_features = np.vstack((rec_face.db_features,np.frombuffer(feat[0], dtype=np.float64)))
|
52 |
+
# guardo la imagen
|
53 |
+
cv2.imwrite(cfg.path_images+os.sep+name+".jpg", im)
|
54 |
+
return 'ok'
|
55 |
+
except Exception as ex:
|
56 |
+
error = ''.join(traceback.format_exception(etype=type(ex), value=ex, tb=ex.__traceback__))
|
57 |
+
return error
|
race_detection/f_my_race.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
como usar
|
3 |
+
1. instanciar el modelo
|
4 |
+
emo = f_my_race.Race_Model()
|
5 |
+
2. ingresar una imagen donde solo se vea un rostro (usar modelo deteccion de rostros para extraer una imagen con solo el rostro)
|
6 |
+
emo.predict_race(face_image)
|
7 |
+
"""
|
8 |
+
|
9 |
+
#from basemodels import VGGFace
|
10 |
+
from deepface.basemodels import VGGFace
|
11 |
+
import os
|
12 |
+
from pathlib import Path
|
13 |
+
import gdown
|
14 |
+
import numpy as np
|
15 |
+
from keras.models import Model, Sequential
|
16 |
+
from keras.layers import Convolution2D, Flatten, Activation
|
17 |
+
import zipfile
|
18 |
+
from keras.preprocessing import image
|
19 |
+
import cv2
|
20 |
+
|
21 |
+
|
22 |
+
class Race_Model():
|
23 |
+
def __init__(self):
|
24 |
+
self.model = self.loadModel()
|
25 |
+
self.race_labels = ['asian', 'indian', 'black', 'white', 'middle eastern', 'latino hispanic']
|
26 |
+
|
27 |
+
def predict_race(self,face_image):
|
28 |
+
image_preprocesing = self.transform_face_array2race_face(face_image)
|
29 |
+
race_predictions = self.model.predict(image_preprocesing )[0,:]
|
30 |
+
result_race = self.race_labels[np.argmax(race_predictions)]
|
31 |
+
return result_race
|
32 |
+
|
33 |
+
def loadModel(self):
|
34 |
+
model = VGGFace.baseModel()
|
35 |
+
#--------------------------
|
36 |
+
classes = 6
|
37 |
+
base_model_output = Sequential()
|
38 |
+
base_model_output = Convolution2D(classes, (1, 1), name='predictions')(model.layers[-4].output)
|
39 |
+
base_model_output = Flatten()(base_model_output)
|
40 |
+
base_model_output = Activation('softmax')(base_model_output)
|
41 |
+
#--------------------------
|
42 |
+
race_model = Model(inputs=model.input, outputs=base_model_output)
|
43 |
+
#--------------------------
|
44 |
+
#load weights
|
45 |
+
home = str(Path.home())
|
46 |
+
if os.path.isfile(home+'/.deepface/weights/race_model_single_batch.h5') != True:
|
47 |
+
print("race_model_single_batch.h5 will be downloaded...")
|
48 |
+
#zip
|
49 |
+
url = 'https://drive.google.com/uc?id=1nz-WDhghGQBC4biwShQ9kYjvQMpO6smj'
|
50 |
+
output = home+'/.deepface/weights/race_model_single_batch.zip'
|
51 |
+
gdown.download(url, output, quiet=False)
|
52 |
+
#unzip race_model_single_batch.zip
|
53 |
+
with zipfile.ZipFile(output, 'r') as zip_ref:
|
54 |
+
zip_ref.extractall(home+'/.deepface/weights/')
|
55 |
+
race_model.load_weights(home+'/.deepface/weights/race_model_single_batch.h5')
|
56 |
+
return race_model
|
57 |
+
#--------------------------
|
58 |
+
def transform_face_array2race_face(self,face_array,grayscale=False,target_size = (224, 224)):
|
59 |
+
detected_face = face_array
|
60 |
+
if grayscale == True:
|
61 |
+
detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY)
|
62 |
+
detected_face = cv2.resize(detected_face, target_size)
|
63 |
+
img_pixels = image.img_to_array(detected_face)
|
64 |
+
img_pixels = np.expand_dims(img_pixels, axis = 0)
|
65 |
+
#normalize input in [0, 1]
|
66 |
+
img_pixels /= 255
|
67 |
+
return img_pixels
|
requirements.txt
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==0.9.0
|
2 |
+
appnope==0.1.0
|
3 |
+
astroid==2.4.2
|
4 |
+
astunparse==1.6.3
|
5 |
+
backcall==0.2.0
|
6 |
+
cachetools==4.1.1
|
7 |
+
certifi==2020.6.20
|
8 |
+
chardet==3.0.4
|
9 |
+
click==7.1.2
|
10 |
+
decorator==4.4.2
|
11 |
+
deepface==0.0.33
|
12 |
+
dlib==19.20.0
|
13 |
+
face-recognition==1.3.0
|
14 |
+
face-recognition-models==0.3.0
|
15 |
+
filelock==3.0.12
|
16 |
+
Flask==1.1.2
|
17 |
+
gast==0.3.3
|
18 |
+
gdown==3.12.0
|
19 |
+
google-auth==1.19.2
|
20 |
+
google-auth-oauthlib==0.4.1
|
21 |
+
google-pasta==0.2.0
|
22 |
+
grpcio==1.30.0
|
23 |
+
h5py==2.10.0
|
24 |
+
idna==2.10
|
25 |
+
importlib-metadata==1.7.0
|
26 |
+
imutils==0.5.3
|
27 |
+
ipykernel==5.3.4
|
28 |
+
ipython==7.16.1
|
29 |
+
ipython-genutils==0.2.0
|
30 |
+
isort==4.3.21
|
31 |
+
itsdangerous==1.1.0
|
32 |
+
jedi==0.17.2
|
33 |
+
Jinja2==2.11.2
|
34 |
+
jupyter-client==6.1.6
|
35 |
+
jupyter-core==4.6.3
|
36 |
+
Keras==2.4.3
|
37 |
+
Keras-Preprocessing==1.1.2
|
38 |
+
lazy-object-proxy==1.4.3
|
39 |
+
Markdown==3.2.2
|
40 |
+
MarkupSafe==1.1.1
|
41 |
+
mccabe==0.6.1
|
42 |
+
numpy==1.19.1
|
43 |
+
oauthlib==3.1.0
|
44 |
+
opencv-python==4.3.0.36
|
45 |
+
opt-einsum==3.3.0
|
46 |
+
pandas==1.0.5
|
47 |
+
parso==0.7.1
|
48 |
+
pexpect==4.8.0
|
49 |
+
pickleshare==0.7.5
|
50 |
+
Pillow==7.2.0
|
51 |
+
prompt-toolkit==3.0.5
|
52 |
+
protobuf==3.12.2
|
53 |
+
ptyprocess==0.6.0
|
54 |
+
pyasn1==0.4.8
|
55 |
+
pyasn1-modules==0.2.8
|
56 |
+
Pygments==2.6.1
|
57 |
+
pylint==2.5.3
|
58 |
+
PySocks==1.7.1
|
59 |
+
python-dateutil==2.8.1
|
60 |
+
pytz==2020.1
|
61 |
+
PyYAML==5.3.1
|
62 |
+
pyzmq==19.0.1
|
63 |
+
requests==2.24.0
|
64 |
+
requests-oauthlib==1.3.0
|
65 |
+
rsa==4.6
|
66 |
+
scipy==1.4.1
|
67 |
+
six==1.15.0
|
68 |
+
tensorboard==2.2.2
|
69 |
+
tensorboard-plugin-wit==1.7.0
|
70 |
+
tensorflow==2.2.0
|
71 |
+
tensorflow-estimator==2.2.0
|
72 |
+
termcolor==1.1.0
|
73 |
+
toml==0.10.1
|
74 |
+
tornado==6.0.4
|
75 |
+
tqdm==4.48.0
|
76 |
+
traitlets==4.3.3
|
77 |
+
typed-ast==1.4.1
|
78 |
+
urllib3==1.25.10
|
79 |
+
wcwidth==0.2.5
|
80 |
+
Werkzeug==1.0.1
|
81 |
+
wrapt==1.12.1
|
82 |
+
zipp==3.1.0
|
results/Face_ID.gif
ADDED
Git LFS Details
|
results/result.png
ADDED