Spaces:
Runtime error
Runtime error
File size: 2,804 Bytes
bd0332f 1d72a65 933ec2b a475ce0 09c998a bd0332f 9ce660a bd0332f 09c998a 933ec2b 4becd74 933ec2b a475ce0 1d72a65 933ec2b bb98ae2 1d72a65 933ec2b 1d72a65 bd0332f 1d72a65 d57f720 933ec2b d57f720 933ec2b b94cdc8 bd0332f 933ec2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
import spaces
from threading import Thread
from typing import Iterator
model_id = "mistralai/Mistral-Nemo-Instruct-2407"
MAX_INPUT_TOKEN_LENGTH = 4096
# Загрузка токенизатора и модели
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
load_in_8bit=True
)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_beams=1
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Настройка интерфейса Gradio
iface = gr.ChatInterface(
predict,
chatbot=gr.Chatbot(height=600),
textbox=gr.Textbox(placeholder="Введите ваше сообщение здесь...", container=False, scale=7),
title="Чат с Aeonium v1.1",
description="Это чат-интерфейс для модели Aeonium v1.1 Chat 4B. Задавайте вопросы и получайте ответы!",
theme="soft",
retry_btn="Повторить",
undo_btn="Отменить последнее",
clear_btn="Очистить",
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Максимальное количество новых токенов"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Температура"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
# Запуск интерфейса
iface.launch() |