--- library_name: transformers language: - ta license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - sp03/tamil metrics: - wer model-index: - name: Whisper Small ta - Sp03 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: sp03/tamil config: default split: None args: 'config: ta, split: test' metrics: - name: Wer type: wer value: 100.0 --- # Whisper Small ta - Sp03 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 3.6056 - Wer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 1.4066 | 1.0 | 4 | 9.3832 | 100.0 | | 21.3162 | 2.0 | 8 | 21.2056 | 100.0 | | 11.2822 | 3.0 | 12 | 7.6851 | 100.0 | | 6.0345 | 4.0 | 16 | 4.8468 | 100.0 | | 3.8909 | 5.0 | 20 | 3.6056 | 100.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0