--- library_name: keras-hub pipeline_tag: text-generation language: - en tags: - gemma2b - gemma - google - gemini - gemma data science - gemma 2b data science - data science model datasets: - soufyane/DATA_SCIENCE_QA --- This is a [`Gemma` model](https://keras.io/api/keras_nlp/models/gemma) uploaded using the KerasNLP library and can be used with JAX, TensorFlow, and PyTorch backends. This model is related to a `CausalLM` task. Model config: * **name:** gemma_backbone * **trainable:** True * **vocabulary_size:** 256000 * **num_layers:** 18 * **num_query_heads:** 8 * **num_key_value_heads:** 1 * **hidden_dim:** 2048 * **intermediate_dim:** 32768 * **head_dim:** 256 * **layer_norm_epsilon:** 1e-06 * **dropout:** 0 * **Model Details:** * **Architecture:** Gemma 2b is based on a deep neural network architecture, utilizing state-of-the-art techniques in natural language processing and machine learning. * **Fine-tuning Framework:** Gemma 2b was fine-tuned using the Keras NLP framework, which provides powerful tools for building and training neural network models specifically tailored for natural language processing tasks. * **Training Data:** Gemma 2b was fine-tuned on a diverse set of data science datasets. https://huggingface.co/datasets/soufyane/DATA_SCIENCE_QA * **Preprocessing:** The model incorporates standard preprocessing techniques including tokenization, normalization, and feature scaling to handle input data effectively. **use it on kaggle:** I recommend to use the model on kaggle(free GPU use P100) for fast responses here's the link to my notebook: https://www.kaggle.com/code/sufyen/gemma-2b-data-science-from-hugging-face **how to use:** ```python #install the necessery PKGs !pip install -q -U keras-nlp !pip install -q -U keras>=3 import keras_nlp from keras_nlp.models import GemmaCausalLM import warnings warnings.filterwarnings('ignore') import os #set the envirenment os.environ["KERAS_BACKEND"] = "jax" # Or "torch" or "tensorflow". os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"]="1.00" #load the model from HF model = keras_nlp.models.CausalLM.from_preset(f"hf://soufyane/gemma_data_science") while True: x = input("enter your question: ") print(model.generate(f"question: {x}", max_length=256)) ```