{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd162e97480>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671537809335162901, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": { ":type:": "", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAABkL1syE0/LYRkvWpOqb65j8s8WPJUPAAAAAAAAAAAmnsaPIUHjLuMoEC8N8KXPGUalryCl4G4AACAPwAAgD8apgC+OnJqP4qSUjuK3LC+zlDuvciaBD4AAAAAAAAAADPsmbxpaku8LNGIvELXRLvVBos98y4YPgAAgD8AAIA/zeTou2RhpT0NmSu+22FQvs5z7L39u3w7AAAAAAAAAAAa7FS9e6qhugiOiLKL6T0wJnqHOUhi/zIAAIA/AACAP83GET24eI8+yH6hvPpSmr6yjS27y9JhvAAAAAAAAAAAmoNivZ/w/rtKFry68vB1PCFmVz2buU+9AACAPwAAgD9muFW8BSGGu8TbOzx7mZI8zzTBvGJnej0AAIA/AACAPzPykr1x47o9qCcCPicqhL5ayma9u/rZPQAAAAAAAAAAzTjXvJEXSD8xYIy9ZrqkvrRtOjzd7Ka8AAAAAAAAAADNiSi9jyZ6unYUo7Lro00w/W+DuvNOIzMAAIA/AACAP6bnEb4k7cY+SKJkPe/JcL4Uyva90oYZPQAAAAAAAAAAAABPO3HbOrt7bdU7oE90PID9mbwNK1Q9AACAPwAAgD+a8oK9pCBsuWDlVTvdLqg1XbmzO5OmpjQAAAAAAAAAAE3hGT2UI7w//W4EPybtlj6/nbO7iDGGPQAAAAAAAAAAjWD9PZofiz/zPWE++S/mvgRreT6/0Z88AAAAAAAAAAAarx29oW6XPyYuyr0Gi8S+KFyAO5HPnzwAAAAAAAAAABqPjr2RKPI9QZOJPR5nXr6FhzM8AqB6vQAAAAAAAAAAmtbBvIfYRz/STqm9n2HKvsPSmjwA+q69AAAAAAAAAAC2+J++ymdsPzjyT73Ufbi+wt+/vkr7HT4AAAAAAAAAAM0iQL3hTvQ9lW4dPY3Oir7dA5Q7VvmtvQAAAAAAAAAAmijrvZ62lz/fUQ6/IJj8vm9i6rxKejG+AAAAAAAAAACAmau960LWPR4Toz05k6i+okowO2wrprwAAAAAAAAAAJru57wGSX8/rtnTvVHayb6BkBi9aiVIPQAAAAAAAAAATXfaPdyrvj5inBq+uUODvrzUHT3b9Ku9AAAAAAAAAABmWsS7FMKWuipYCz7gEZG+U2/vPGC99b4AAAAAAACAP9NxFT4ZtpE/6qisPu+rvb72HIk+5bbyPQAAAAAAAAAA5g1CPZ/35bt9vea70l2iPJmRQr1WuYc9AACAPwAAgD+Abi+9EruiPNuy+zz/4pO+uJpivODmTT0AAAAAAAAAAGZQI7ysy0w/tit2vp9U3b7aN5i9TrgEvgAAAAAAAAAAYHWOPnskRD+K2qy8ywO/voSVrT7vWBi+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu" }, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4=" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVaBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIx2Rx/9EscECUhpRSlIwBbJRL/YwBdJRHQJ+Jxkxyn1p1fZQoaAZoCWgPQwiQuwhTVLJyQJSGlFKUaBVL/2gWR0CfieFQ2uPndX2UKGgGaAloD0MIVTNrKaDxcECUhpRSlGgVTQoBaBZHQJ+LJTqB3A51fZQoaAZoCWgPQwihLedS3KRwQJSGlFKUaBVNJAFoFkdAn4thoRIz33V9lChoBmgJaA9DCGfzOAwm2nBAlIaUUpRoFU0SAWgWR0Cfi3C+lCTmdX2UKGgGaAloD0MIox03/O5VbUCUhpRSlGgVTREBaBZHQJ+LrZ6D5CZ1fZQoaAZoCWgPQwjiyAORhSBxQJSGlFKUaBVNDQFoFkdAn4z6TB68hHV9lChoBmgJaA9DCAKfH0bIynBAlIaUUpRoFU0+AWgWR0CfjSOuq3mWdX2UKGgGaAloD0MIyTzyB4MRcECUhpRSlGgVTSEBaBZHQJ+Ny2a2F391fZQoaAZoCWgPQwh32a87HWFxQJSGlFKUaBVL82gWR0CfjiUI9kjHdX2UKGgGaAloD0MIhlrTvGPAb0CUhpRSlGgVTSMBaBZHQJ+O3b/Ot4l1fZQoaAZoCWgPQwirzmqBvRhxQJSGlFKUaBVNNQFoFkdAn49XVkMCtHV9lChoBmgJaA9DCIPab+0EA3FAlIaUUpRoFU0bAWgWR0Cfj8eYlY2bdX2UKGgGaAloD0MIstr8v6rHckCUhpRSlGgVTRgBaBZHQJ+P9p48lol1fZQoaAZoCWgPQwgpd5/j4+FxQJSGlFKUaBVNCAFoFkdAn5AXtWuHOHV9lChoBmgJaA9DCOguibOirnBAlIaUUpRoFU0CAWgWR0CfkCSjQAuJdX2UKGgGaAloD0MI6bga2RULbUCUhpRSlGgVTQcBaBZHQJ+Qqvr4WUN1fZQoaAZoCWgPQwjKGvUQTalxQJSGlFKUaBVNQAFoFkdAn5Iu9eyAx3V9lChoBmgJaA9DCFEwYwrW03FAlIaUUpRoFU0sAWgWR0Cfki6J66atdX2UKGgGaAloD0MIqIsUykKUbkCUhpRSlGgVTToBaBZHQJ+SrndO6/Z1fZQoaAZoCWgPQwjiW1g3nq1yQJSGlFKUaBVNDAFoFkdAn5LpiI+GGnV9lChoBmgJaA9DCDIDlfFvRHBAlIaUUpRoFU0gAWgWR0CfkuX+l0o0dX2UKGgGaAloD0MIZVBtcCJtcUCUhpRSlGgVTR0BaBZHQJ+S7jQzDXR1fZQoaAZoCWgPQwjnbtdLUwNzQJSGlFKUaBVNAAFoFkdAn5MUq6OHWXV9lChoBmgJaA9DCFIN+z0xa3BAlIaUUpRoFU00AWgWR0CflK47zTWodX2UKGgGaAloD0MIXJNuSyQOckCUhpRSlGgVTRYBaBZHQJ+VEYR/ViF1fZQoaAZoCWgPQwgaTwRxXnVwQJSGlFKUaBVNGgFoFkdAn5VIC6pYLnV9lChoBmgJaA9DCCCySBNvWW5AlIaUUpRoFUvtaBZHQJ+V3yXlbNd1fZQoaAZoCWgPQwgkgJvFC4NxQJSGlFKUaBVNBQFoFkdAn5Y/vSc9XHV9lChoBmgJaA9DCAa4IFsWgHBAlIaUUpRoFU0GAWgWR0CflnpwCKaYdX2UKGgGaAloD0MI3Siy1pCAcECUhpRSlGgVTRcBaBZHQJ+YLWTX8O11fZQoaAZoCWgPQwhtrS8S2kBuQJSGlFKUaBVNAAFoFkdAn5hIaDPGAHV9lChoBmgJaA9DCBefAmD89nFAlIaUUpRoFUv8aBZHQJ+YSX9itq51fZQoaAZoCWgPQwjGa17VWfhuQJSGlFKUaBVNPQFoFkdAn5iLDIikf3V9lChoBmgJaA9DCFotsMdEEHFAlIaUUpRoFU0LAWgWR0CfmRcIqsltdX2UKGgGaAloD0MIUwlP6HUWckCUhpRSlGgVTQ4BaBZHQJ+ZdhjOLR91fZQoaAZoCWgPQwichxOYTglKQJSGlFKUaBVN6ANoFkdAn5luf29L6HV9lChoBmgJaA9DCPEpAMaz7m5AlIaUUpRoFUv9aBZHQJ+a3zvqkdp1fZQoaAZoCWgPQwjYZmMl5ldyQJSGlFKUaBVNCQFoFkdAn5sqNp/PPnV9lChoBmgJaA9DCBDoTNoURHFAlIaUUpRoFU0cAWgWR0Cfm1Wcz67/dX2UKGgGaAloD0MILQWk/Y9abUCUhpRSlGgVTRoBaBZHQJ+bYmF8G9p1fZQoaAZoCWgPQwjk9PV8jRlzQJSGlFKUaBVL72gWR0Cfm9cuanaWdX2UKGgGaAloD0MIOdbFbbTKbkCUhpRSlGgVTQMBaBZHQJ+cPqoqCpZ1fZQoaAZoCWgPQwichqjC3zZxQJSGlFKUaBVNIgFoFkdAn51QGB4D93V9lChoBmgJaA9DCLywNVu5bnBAlIaUUpRoFU0OAWgWR0CfnYJWNm16dX2UKGgGaAloD0MItOOG380dcECUhpRSlGgVS/BoFkdAn54BwIdELHV9lChoBmgJaA9DCAQAx579V3FAlIaUUpRoFU0rAWgWR0CfnqCpWFN+dX2UKGgGaAloD0MI0okEU42gcUCUhpRSlGgVTSgBaBZHQJ+eyCBf8dh1fZQoaAZoCWgPQwh0m3CvzJBxQJSGlFKUaBVL8GgWR0Cfnu/kvK2bdX2UKGgGaAloD0MIgNdnzvrmbkCUhpRSlGgVTQgBaBZHQJ+fN1wHZ9N1fZQoaAZoCWgPQwjPEI5ZdlNzQJSGlFKUaBVNBAFoFkdAn5+7fHggo3V9lChoBmgJaA9DCNtMhXgkOXBAlIaUUpRoFU0FAWgWR0Cfn8bDMvAXdX2UKGgGaAloD0MILQd6qG0MckCUhpRSlGgVTQ0BaBZHQJ+f9H4Glhx1fZQoaAZoCWgPQwhAFMyYAllzQJSGlFKUaBVL5mgWR0CfoCmLLpzLdX2UKGgGaAloD0MIrVCk+zkkcECUhpRSlGgVTU0BaBZHQJ+hFgQYk3V1fZQoaAZoCWgPQwiVnBN76KpwQJSGlFKUaBVL+2gWR0CfoXKfWcz7dX2UKGgGaAloD0MIlzYclgbLb0CUhpRSlGgVTTEBaBZHQJ+hzXnQpnZ1fZQoaAZoCWgPQwgIAI49O9xyQJSGlFKUaBVNAAFoFkdAn6HbBwdbPnV9lChoBmgJaA9DCLxYGCInbXJAlIaUUpRoFU0HAWgWR0CfowuVX3g2dX2UKGgGaAloD0MI/8pKkxIrc0CUhpRSlGgVTQUBaBZHQJ+lQIcBEKF1fZQoaAZoCWgPQwir7Lsi+MlvQJSGlFKUaBVNDAFoFkdAn6Vd8Rcu8XV9lChoBmgJaA9DCJ0tILQe73BAlIaUUpRoFU0zAWgWR0CfpaKHwgDBdX2UKGgGaAloD0MIxca8jni0cUCUhpRSlGgVS/1oFkdAn6XLcbiqAHV9lChoBmgJaA9DCImyt5RzcXNAlIaUUpRoFU0GAWgWR0CfplGoaUA1dX2UKGgGaAloD0MIT5FDxE2AcECUhpRSlGgVTR4BaBZHQJ+mVwsGxD91fZQoaAZoCWgPQwj2zmir0tlwQJSGlFKUaBVNFgFoFkdAn6bBVhkRSXV9lChoBmgJaA9DCOcZ+5JNfnBAlIaUUpRoFU0LAWgWR0CfqCo4+8oQdX2UKGgGaAloD0MIzQLtDmkUcECUhpRSlGgVS/5oFkdAn6iGKqGUOnV9lChoBmgJaA9DCO1imune029AlIaUUpRoFUvnaBZHQJ+o+jFhodx1fZQoaAZoCWgPQwh7ouvCjwFxQJSGlFKUaBVL/mgWR0CfqQhsqJ/HdX2UKGgGaAloD0MIipKQSFuycECUhpRSlGgVTRsBaBZHQJ+plGG21D11fZQoaAZoCWgPQwjVPEfkewdzQJSGlFKUaBVNKwFoFkdAn6qCi/O+qXV9lChoBmgJaA9DCJ8FobwPu29AlIaUUpRoFUvxaBZHQJ+rH82rGR51fZQoaAZoCWgPQwjl7J3RVv5uQJSGlFKUaBVNAQFoFkdAn6sw+6iCa3V9lChoBmgJaA9DCFMDzefcP3JAlIaUUpRoFU0LAWgWR0CfqzGoJiRXdX2UKGgGaAloD0MI6Nms+twGcECUhpRSlGgVS/JoFkdAn6tf+OwPiHV9lChoBmgJaA9DCHqLh/ccInNAlIaUUpRoFU1QAWgWR0CfrEyFPBSDdX2UKGgGaAloD0MIxty1hPzeckCUhpRSlGgVS/xoFkdAn6zBNdqtYHV9lChoBmgJaA9DCC1BRkDFNXBAlIaUUpRoFUv6aBZHQJ+tGc0+C9R1fZQoaAZoCWgPQwii68IPjsRwQJSGlFKUaBVL6mgWR0CfrVTeO4oadX2UKGgGaAloD0MIVcGopM5nc0CUhpRSlGgVTc8BaBZHQJ+tcNMGorF1fZQoaAZoCWgPQwiNKO0NvthzQJSGlFKUaBVNJQFoFkdAn62tZaFEiXV9lChoBmgJaA9DCHHjFvPzbHJAlIaUUpRoFU0NAWgWR0CfrdBT4tYkdX2UKGgGaAloD0MIdzHNdK/Zb0CUhpRSlGgVTSMBaBZHQJ+uJPbfxc51fZQoaAZoCWgPQwi37BD/sJ5wQJSGlFKUaBVNKAFoFkdAn67gLZzxPXV9lChoBmgJaA9DCDnulA6W+XBAlIaUUpRoFU0DAWgWR0Cfr0PPcBU8dX2UKGgGaAloD0MIwF5hwT2Xc0CUhpRSlGgVTSMBaBZHQJ+wUbm2b5N1fZQoaAZoCWgPQwgiwr8IGoRyQJSGlFKUaBVNMQFoFkdAn7FkiQkonnV9lChoBmgJaA9DCNrjhXT4N3NAlIaUUpRoFUvwaBZHQJ+xmPkq+al1fZQoaAZoCWgPQwhyNbIrLZ9yQJSGlFKUaBVL72gWR0CfsostCiRGdX2UKGgGaAloD0MIsMvwn65gckCUhpRSlGgVTTEBaBZHQJ+yyphnanJ1fZQoaAZoCWgPQwi4I5wW/NZwQJSGlFKUaBVL/WgWR0CfssPY4ACGdX2UKGgGaAloD0MIQxzr4naNcECUhpRSlGgVTQkBaBZHQJ+y94fOlft1fZQoaAZoCWgPQwijW6/pgaBwQJSGlFKUaBVL+mgWR0Cfsx+NtIkJdX2UKGgGaAloD0MIi8BY38AwYkCUhpRSlGgVTegDaBZHQJ+z51mrbQF1fZQoaAZoCWgPQwjGUiRfifNuQJSGlFKUaBVNIgFoFkdAn7Rx7iQ1aXV9lChoBmgJaA9DCCxHyECe3HBAlIaUUpRoFU0OAWgWR0CftH57PY4AdX2UKGgGaAloD0MIyqgyjHvdcECUhpRSlGgVS+poFkdAn7S1s1sLv3V9lChoBmgJaA9DCELr4ctE9G1AlIaUUpRoFU0IAWgWR0CftWgk1MufdX2UKGgGaAloD0MITYI3pJHBckCUhpRSlGgVTQYBaBZHQJ+1+xD9fkZ1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }