--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- # my_awesome_model This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0506 - Accuracy: 0.6959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 383 | 1.6014 | 0.3719 | | 1.6917 | 2.0 | 766 | 1.1865 | 0.5951 | | 1.1046 | 3.0 | 1149 | 1.0636 | 0.6473 | | 0.9029 | 4.0 | 1532 | 1.0561 | 0.6603 | | 0.9029 | 5.0 | 1915 | 1.0121 | 0.6794 | | 0.765 | 6.0 | 2298 | 0.9676 | 0.7072 | | 0.6696 | 7.0 | 2681 | 0.9890 | 0.6985 | | 0.5756 | 8.0 | 3064 | 1.0216 | 0.7107 | | 0.5756 | 9.0 | 3447 | 1.0752 | 0.6881 | | 0.5302 | 10.0 | 3830 | 1.0506 | 0.6959 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1