--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d6d11c05-49c1-48db-bd60-edaf5fe095d5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Coder-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ed34c6f844eca889_train_data.json ds_type: json format: custom path: /workspace/input_data/ed34c6f844eca889_train_data.json type: field_input: context field_instruction: source field_output: reference_original format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: sn56m1/d6d11c05-49c1-48db-bd60-edaf5fe095d5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 72GB max_steps: 100 micro_batch_size: 4 mlflow_experiment_name: /tmp/ed34c6f844eca889_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: sn56-miner wandb_mode: disabled wandb_name: null wandb_project: god wandb_run: ae3d wandb_runid: null warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# d6d11c05-49c1-48db-bd60-edaf5fe095d5 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 76 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0396 | 1 | 2.6199 | | 2.3957 | 0.2772 | 7 | 2.1993 | | 2.0394 | 0.5545 | 14 | 1.8465 | | 1.6186 | 0.8317 | 21 | 1.5881 | | 1.6128 | 1.1089 | 28 | 1.4710 | | 1.2599 | 1.3861 | 35 | 1.4217 | | 1.1683 | 1.6634 | 42 | 1.3953 | | 1.2638 | 1.9406 | 49 | 1.3848 | | 0.9957 | 2.2178 | 56 | 1.3781 | | 0.9437 | 2.4950 | 63 | 1.3787 | | 1.0016 | 2.7723 | 70 | 1.3773 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1