--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-bert-2.0-swahili-colab-CV16.0_5epochs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: sw split: test args: sw metrics: - name: Wer type: wer value: 0.8218669188312941 --- # w2v-bert-2.0-swahili-colab-CV16.0_5epochs This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.8219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.015 | 0.16 | 300 | inf | 0.2387 | | 0.2497 | 0.33 | 600 | inf | 0.2413 | | 0.2246 | 0.49 | 900 | inf | 0.2121 | | 0.2032 | 0.66 | 1200 | inf | 0.2097 | | 0.1895 | 0.82 | 1500 | inf | 0.1969 | | 0.1897 | 0.99 | 1800 | inf | 0.2092 | | 0.1718 | 1.15 | 2100 | inf | 0.1895 | | 0.1872 | 1.31 | 2400 | inf | 0.1949 | | 0.2056 | 1.48 | 2700 | inf | 0.1975 | | 0.3533 | 1.64 | 3000 | inf | 0.4304 | | 0.5492 | 1.81 | 3300 | inf | 0.2979 | | 1.0312 | 1.97 | 3600 | inf | 0.5560 | | 0.8936 | 2.14 | 3900 | inf | 0.8217 | | 1.0655 | 2.3 | 4200 | inf | 0.8219 | | 1.0856 | 2.46 | 4500 | inf | 0.8219 | | 1.0855 | 2.63 | 4800 | inf | 0.8219 | | 1.0823 | 2.79 | 5100 | inf | 0.8219 | | 1.0847 | 2.96 | 5400 | inf | 0.8219 | | 1.0835 | 3.12 | 5700 | inf | 0.8219 | | 1.0886 | 3.28 | 6000 | inf | 0.8219 | | 1.0801 | 3.45 | 6300 | inf | 0.8219 | | 1.0765 | 3.61 | 6600 | inf | 0.8219 | | 1.0878 | 3.78 | 6900 | inf | 0.8219 | | 1.0884 | 3.94 | 7200 | inf | 0.8219 | | 1.0824 | 4.11 | 7500 | inf | 0.8219 | | 1.0881 | 4.27 | 7800 | inf | 0.8219 | | 1.0884 | 4.43 | 8100 | inf | 0.8219 | | 1.0786 | 4.6 | 8400 | inf | 0.8219 | | 1.0846 | 4.76 | 8700 | inf | 0.8219 | | 1.0861 | 4.93 | 9000 | inf | 0.8219 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0