Upload folder using huggingface_hub
Browse files- README.md +41 -0
- config.json +1 -0
- model.safetensors +3 -0
README.md
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
library_name: segmentation-models-pytorch
|
| 4 |
+
license: other
|
| 5 |
+
pipeline_tag: image-classification
|
| 6 |
+
tags:
|
| 7 |
+
- segmentation-models-pytorch
|
| 8 |
+
- image-classification
|
| 9 |
+
- pytorch
|
| 10 |
+
- mit
|
| 11 |
+
languages:
|
| 12 |
+
- python
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Model card for mit_b5.
|
| 16 |
+
|
| 17 |
+
This repository contains the `imagenet` pre-trained weights for the `mit_b5` model used as
|
| 18 |
+
encoder in the [segmentation-models-pytorch](https://github.com/qubvel-org/segmentation_models.pytorch) library.
|
| 19 |
+
|
| 20 |
+
### Example usage:
|
| 21 |
+
|
| 22 |
+
1. Install the library:
|
| 23 |
+
|
| 24 |
+
```bash
|
| 25 |
+
pip install segmentation-models-pytorch
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
2. Use the encoder in your code:
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
import segmentation_models_pytorch as smp
|
| 32 |
+
|
| 33 |
+
model = smp.Unet(mit_b5, encoder_weights="imagenet")
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
### References
|
| 37 |
+
|
| 38 |
+
- Github: https://github.com/qubvel/segmentation_models.pytorch
|
| 39 |
+
- Docs: https://smp.readthedocs.io/en/latest/
|
| 40 |
+
- Original weights URL: https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/mit_b5.pth
|
| 41 |
+
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"input_space": "RGB", "input_size": [3, 224, 224], "input_range": [0, 1], "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:376d70c46682a3f576bdb064404358d0ca6ef1c55567529849b72714deb14ddb
|
| 3 |
+
size 327923200
|