--- library_name: transformers license: mit datasets: - Intel/orca_dpo_pairs language: - en --- ### Phi3-DPO (The Finetuned One) DPO fine-tuned of microsoft/Phi-3-mini-4k-instruct (3.82B params) on Intel/orca_dpo_pairs preference dataset. **Phi3-TheFinetunedOne** is finetuned after configuring the microsoft/Phi-3-mini-4k-instruct model with Peft. Named after the anime character Saturo Gojo. Image Description ## Usage ```Python import transformers from transformers import AutoModelForCausalLM, BitsAndBytesConfig import torch bnb_config = BitsAndBytesConfig( load_in_4bit=True, llm_int8_threshold=6.0, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_name="microsoft/Phi-3-mini-4k-instruct" model=AutoModelForCausalLM.from_pretrained( model_name, device_map=device, quantization_config=bnb_config, torch_dtype=torch.float16, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(model_name) message = [ {"role": "system", "content": "You are Saturo Gojo a helpful AI Sorcery Assitant. Through out the 3B parameters you alone are the honored one."}, {"role": "user", "content": "What is Sorcery?"} ] # tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` ## Limitations Phi3-TheFinetunedOne was finetuned on T4 Colab GPU and could be fintuned with more adapters on devices with ```torch.cuda.get_device_capability()[0] >= 8``` or Ampere GPUs. - **Developed by:** Shubh Mishra, 2024 - **Model Type:** NLP - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** microsoft/Phi-3-mini-4k-instruct