--- tags: - image-classification - pytorch metrics: - accuracy - Cohen's Kappa model-index: - name: PANDA_ViT results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.47959184646606445 - name: Quadratic Cohen's Kappa type: Quadratic Cohen's Kappa value: 0.5590880513191223 --- # PANDA_ViT An attempt to use a ViT for medical image classification (ISUP grading in prostate histopathology images). Currently uses a tiled and concatenated WSI as input Example Images (1152,1152,3) 36 WSI patches: ISUP 0: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/0c02d3bb3a62519b31c63d0301c6843e_0.jpeg"> ISUP 1: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/0cee71ab57422e04f76e09ef2186fcd5_1.jpeg"> ISUP 2: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/00bbc1482301d16de3ff63238cfd0b34_2.jpeg"> ISUP 3: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/0c5c2d16c0f2e399b7be641e7e7f66d9_3.jpeg"> ISUP 4: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/0c88d7c7033e2048b1068e208b105270_4.jpeg"> ISUP 5: <img width="256" height="256" src="https://huggingface.co/smc/PANDA_ViT/resolve/main/00c15b23b30a5ba061358d9641118904_5.jpeg">