--- base_model: meta-llama/Llama-3.1-8B library_name: peft license: llama3.1 language: - en tags: - finance --- # Model Card for Model ID ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use ```python from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, pipeline import logging # Suppress all warnings logging.getLogger("transformers").setLevel(logging.CRITICAL) #weird warning when using model for inference # Check if CUDA is available if torch.cuda.is_available(): num_devices = torch.cuda.device_count() print(f"Number of available CUDA devices: {num_devices}") for i in range(num_devices): device_name = torch.cuda.get_device_name(i) print(f"\nDevice {i}: {device_name}") else: print("CUDA is not available.") # Specify the device (0 for GPU or -1 for CPU) device = 0 if torch.cuda.is_available() else -1 config = PeftConfig.from_pretrained("smartinez1/Llama-3.1-8B-FINLLM") base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B") model = PeftModel.from_pretrained(base_model, "smartinez1/Llama-3.1-8B-FINLLM") # Load the tokenizer associated with the base model tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B") # Define the unique padding token for fine-tuning custom_pad_token = "<|finetune_right_pad_id|>" tokenizer.add_special_tokens({'pad_token': custom_pad_token}) pad_token_id = tokenizer.pad_token_id # Set up the text generation pipeline with the PEFT model, specifying the device generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device) # List of user inputs user_inputs = [ "Provide a link for Regulation A (Extensions of Credit by Federal Reserve Banks) law", "Define the following term: Insurance Scores.", "Expand the following acronym into its full form: ESCB.", "Provide a concise answer to the following question: Which countries currently have bilateral FTAs in effect with the U.S.?", """Given the following text, only list the following for each: specific Organizations, Legislations, Dates, Monetary Values, and Statistics When can counterparties start notifying the national competent authorities (NCAs) of their intention to apply the reporting exemption in accordance with Article 9(1) EMIR, as amended by Regulation 2019/834?""", "Provide a concise answer to the following question: What type of license is the Apache License, Version 2.0?" ] # Define the prompt template prompt_template = """Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {} ### Answer: """ # Loop over each user input and generate a response for user_input in user_inputs: # Format the user input into the prompt prompt = prompt_template.format(user_input) # Generate a response from the model response = generator(prompt, max_length=200, num_return_sequences=1, do_sample=True) # Extract and clean up the AI's response response_str = response[0]['generated_text'].split('### Answer:')[1].strip() cut_ind = response_str.find("#") # Remove extra information after the response response_str = response_str[:cut_ind].strip() if cut_ind != -1 else response_str # Display the AI's response print(f"User: {user_input}") print(f"AI: {response_str}") print("-" * 50) # Separator for clarity ``` ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2