--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: lora-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.8535113174695299 - name: Recall type: recall value: 0.8726560645620698 - name: F1 type: f1 value: 0.8629775247931459 - name: Accuracy type: accuracy value: 0.9730680240629338 --- # lora-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0920 - Precision: 0.8535 - Recall: 0.8727 - F1: 0.8630 - Accuracy: 0.9731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 220 | 0.1085 | 0.8026 | 0.8314 | 0.8167 | 0.9675 | | No log | 2.0 | 440 | 0.0804 | 0.8693 | 0.8818 | 0.8755 | 0.9759 | | 0.2014 | 3.0 | 660 | 0.0720 | 0.8764 | 0.8970 | 0.8866 | 0.9783 | | 0.2014 | 4.0 | 880 | 0.0688 | 0.8773 | 0.9056 | 0.8912 | 0.9792 | | 0.0882 | 5.0 | 1100 | 0.0674 | 0.8823 | 0.9067 | 0.8943 | 0.9796 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3