---
base_model: silma-ai/silma-embeddding-matryoshka-0.1
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:CosineSimilarityLoss
model-index:
- name: SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8509127994264242
name: Pearson Cosine
- type: spearman_cosine
value: 0.8548500966032416
name: Spearman Cosine
- type: pearson_manhattan
value: 0.821303728669975
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8364598068079891
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8210450198328316
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8382181658285147
name: Spearman Euclidean
- type: pearson_dot
value: 0.8491261828772604
name: Pearson Dot
- type: spearman_dot
value: 0.8559811107036664
name: Spearman Dot
- type: pearson_max
value: 0.8509127994264242
name: Pearson Max
- type: spearman_max
value: 0.8559811107036664
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.8498025312190702
name: Pearson Cosine
- type: spearman_cosine
value: 0.8530609768738506
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8181745876468085
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8328727236454085
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8193792688284338
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8338632184708783
name: Spearman Euclidean
- type: pearson_dot
value: 0.8396368156921546
name: Pearson Dot
- type: spearman_dot
value: 0.8484397673758116
name: Spearman Dot
- type: pearson_max
value: 0.8498025312190702
name: Pearson Max
- type: spearman_max
value: 0.8530609768738506
name: Spearman Max
license: apache-2.0
language:
- ar
- en
---
# SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [silma-ai/silma-embeddding-matryoshka-0.1](https://huggingface.co/silma-ai/silma-embeddding-matryoshka-0.1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then load the model
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")
```
### Samples
#### [+] Short Sentence Similarity
**Arabic**
```python
query = "الطقس اليوم مشمس"
sentence_1 = "الجو اليوم كان مشمسًا ورائعًا"
sentence_2 = "الطقس اليوم غائم"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.42602288722991943
# sentence_2_similarity: 0.10798501968383789
# =======
```
**English**
```python
query = "The weather is sunny today"
sentence_1 = "The morning was bright and sunny"
sentence_2 = "it is too cloudy today"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5796191692352295
# sentence_2_similarity: 0.21948376297950745
# =======
```
#### [+] Long Sentence Similarity
**Arabic**
```python
query = "الكتاب يتحدث عن أهمية الذكاء الاصطناعي في تطوير المجتمعات الحديثة"
sentence_1 = "في هذا الكتاب، يناقش الكاتب كيف يمكن للتكنولوجيا أن تغير العالم"
sentence_2 = "الكاتب يتحدث عن أساليب الطبخ التقليدية في دول البحر الأبيض المتوسط"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.5725120306015015
# sentence_2_similarity: 0.22617210447788239
# =======
```
**English**
```python
query = "China said on Saturday it would issue special bonds to help its sputtering economy, signalling a spending spree to bolster banks"
sentence_1 = "The Chinese government announced plans to release special bonds aimed at supporting its struggling economy and stabilizing the banking sector."
sentence_2 = "Several countries are preparing for a global technology summit to discuss advancements in bolster global banks."
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6438770294189453
# sentence_2_similarity: 0.4720292389392853
# =======
```
#### [+] Question to Paragraph Matching
**Arabic**
```python
query = "ما هي فوائد ممارسة الرياضة؟"
sentence_1 = "ممارسة الرياضة بشكل منتظم تساعد على تحسين الصحة العامة واللياقة البدنية"
sentence_2 = "تعليم الأطفال في سن مبكرة يساعدهم على تطوير المهارات العقلية بسرعة"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6058318614959717
# sentence_2_similarity: 0.006831036880612373
# =======
```
**English**
```python
query = "What are the benefits of exercising?"
sentence_1 = "Regular exercise helps improve overall health and physical fitness"
sentence_2 = "Teaching children at an early age helps them develop cognitive skills quickly"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.3593001365661621
# sentence_2_similarity: 0.06493218243122101
# =======
```
#### [+] Message to Intent-Name Mapping
**Arabic**
```python
query = "أرغب في حجز تذكرة طيران من دبي الى القاهرة يوم الثلاثاء القادم"
sentence_1 = "حجز رحلة"
sentence_2 = "إلغاء حجز"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.4646468162536621
# sentence_2_similarity: 0.19563665986061096
# =======
```
**English**
```python
query = "Please send an email to all of the managers"
sentence_1 = "send email"
sentence_2 = "read inbox emails"
query_embedding = model.encode(query)
print("sentence_1_similarity:", cos_sim(query_embedding, model.encode(sentence_1))[0][0].tolist())
print("sentence_2_similarity:", cos_sim(query_embedding, model.encode(sentence_2))[0][0].tolist())
# ======= Output
# sentence_1_similarity: 0.6485046744346619
# sentence_2_similarity: 0.43906497955322266
# =======
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8509 |
| **spearman_cosine** | **0.8549** |
| pearson_manhattan | 0.8213 |
| spearman_manhattan | 0.8365 |
| pearson_euclidean | 0.821 |
| spearman_euclidean | 0.8382 |
| pearson_dot | 0.8491 |
| spearman_dot | 0.856 |
| pearson_max | 0.8509 |
| spearman_max | 0.856 |
#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8498 |
| **spearman_cosine** | **0.8531** |
| pearson_manhattan | 0.8182 |
| spearman_manhattan | 0.8329 |
| pearson_euclidean | 0.8194 |
| spearman_euclidean | 0.8339 |
| pearson_dot | 0.8396 |
| spearman_dot | 0.8484 |
| pearson_max | 0.8498 |
| spearman_max | 0.8531 |
## Training Details
This model was fine-tuned via 2 phases:
### Phase 1:
In phase `1`, we curated a dataset [silma-ai/silma-arabic-triplets-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-triplets-dataset-v1.0) which
contains more than `2.25M` records of (anchor, positive and negative) Arabic/English samples.
Only the first `600` samples were taken to be the `eval` dataset, while the rest were used for fine-tuning.
Phase `1` produces a finetuned `Matryoshka` model based on [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) with the following hyperparameters:
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-05
- `num_train_epochs`: 3
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/matryoshka/matryoshka_sts.py)**
### Phase 2:
In phase `2`, we curated a dataset [silma-ai/silma-arabic-english-sts-dataset-v1.0](https://huggingface.co/datasets/silma-ai/silma-arabic-english-sts-dataset-v1.0) which
contains more than `30k` records of (sentence1, sentence2 and similarity-score) Arabic/English samples.
Only the first `100` samples were taken to be the `eval` dataset, while the rest was used for fine-tuning.
Phase `2` produces a finetuned `STS` model based on the model from phase `1`, with the following hyperparameters:
- `eval_strategy`: steps
- `per_device_train_batch_size`: 250
- `per_device_eval_batch_size`: 10
- `learning_rate`: 1e-06
- `num_train_epochs`: 10
- `bf16`: True
- `dataloader_drop_last`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
**[training script](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py)**
### Training Logs (Phase 2)
| Epoch | Step | Training Loss | Validation Loss | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|
| 0.3650 | 50 | 0.0395 | 0.0424 | 0.8486 | 0.8487 |
| 0.7299 | 100 | 0.031 | 0.0427 | 0.8493 | 0.8495 |
| 1.0949 | 150 | 0.0344 | 0.0430 | 0.8496 | 0.8496 |
| 1.4599 | 200 | 0.0313 | 0.0427 | 0.8506 | 0.8504 |
| 1.8248 | 250 | 0.0267 | 0.0428 | 0.8504 | 0.8506 |
| 2.1898 | 300 | 0.0309 | 0.0429 | 0.8516 | 0.8515 |
| 2.5547 | 350 | 0.0276 | 0.0425 | 0.8531 | 0.8521 |
| 2.9197 | 400 | 0.028 | 0.0426 | 0.8530 | 0.8515 |
| 3.2847 | 450 | 0.0281 | 0.0425 | 0.8539 | 0.8521 |
| 3.6496 | 500 | 0.0248 | 0.0425 | 0.8542 | 0.8523 |
| 4.0146 | 550 | 0.0302 | 0.0424 | 0.8541 | 0.8520 |
| 4.3796 | 600 | 0.0261 | 0.0421 | 0.8545 | 0.8523 |
| 4.7445 | 650 | 0.0233 | 0.0420 | 0.8544 | 0.8522 |
| 5.1095 | 700 | 0.0281 | 0.0419 | 0.8547 | 0.8528 |
| 5.4745 | 750 | 0.0257 | 0.0419 | 0.8546 | 0.8531 |
| 5.8394 | 800 | 0.0235 | 0.0418 | 0.8546 | 0.8527 |
| 6.2044 | 850 | 0.0268 | 0.0418 | 0.8551 | 0.8529 |
| 6.5693 | 900 | 0.0238 | 0.0416 | 0.8552 | 0.8526 |
| 6.9343 | 950 | 0.0255 | 0.0416 | 0.8549 | 0.8526 |
| 7.2993 | 1000 | 0.0253 | 0.0416 | 0.8548 | 0.8528 |
| 7.6642 | 1050 | 0.0225 | 0.0415 | 0.8550 | 0.8525 |
| 8.0292 | 1100 | 0.0276 | 0.0414 | 0.8550 | 0.8528 |
| 8.3942 | 1150 | 0.0244 | 0.0415 | 0.8550 | 0.8533 |
| 8.7591 | 1200 | 0.0218 | 0.0414 | 0.8551 | 0.8529 |
| 9.1241 | 1250 | 0.0263 | 0.0414 | 0.8550 | 0.8531 |
| 9.4891 | 1300 | 0.0241 | 0.0414 | 0.8552 | 0.8533 |
| 9.8540 | 1350 | 0.0227 | 0.0415 | 0.8549 | 0.8531 |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```